В продолжение первой части статьи приводятся экспериментальные результаты зондирования волн Кельвина–Гельмгольца УФ-лидаром УОР-5. Зондирование атмосферы лидаром УОР-5 производилось в зимне-весенний период над городской застройкой, представляющей собой «остров тепла». Улучшенные характеристики лидара в сочетании с термическим состоянием пограничного слоя атмосферы, который в холодное время года стратифицирован в основном устойчиво, позволили получить новые данные о форме волн Кельвина–Гельмгольца. Результаты анализа показали, что чувствительность и потенциал лидара УОР-5 (355 нм) выше, чем у лидара УОР-4 (532 нм). Зафиксировано, что после прохождения лазерным пучком пика области с максимальной интенсивностью турбулентности в гребне волны эхосигналы в обоих приемных каналах понижаются на 30%. Такое воздействие турбулентной атмосферы на эхосигналы лидара можно объяснить уширением зондирующего пучка многократным рассеянием на случайных неоднородностях среды.
турбулентный лидар, увеличение обратного рассеяния, неустойчивость Кельвина–Гельмгольца, атмосферная турбулентность
1. Разенков И.А. Зондирование волн Кельвина–Гельмгольца турбулентным лидаром. I. Лидар УОР-4 // Оптика атмосф. и океана. 2023. Т. 36, № 11. С. 910–920. DOI: 10.15372/AOO20231106.
2. Разенков И.А. Анализ технических решений при проектировании турбулентного лидара // Оптика атмосф. и океана. 2022. Т. 35, № 9. С. 766–776; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158.
3. Шакина Н.П., Иванова А.Р. Прогнозирование метеорологических условий для авиации. М.: ТРИАДА ЛТД, 2016. 312 с.
4. Способ и лидарная система для оперативного обнаружения турбулентности в ясном небе с борта воздушного судна: Пат. 2798694. Россия, МКП, G01S 17/95. Разенков И.А., Белан Б.Д., Рынков К.А., Ивлев Г.А.; Федер. гос. бюд. учр. науки Институт оптики атмосферы им. В.Е. Зуева СО РАН. № 2023106962; Заявл. 23.03.2023; Опубл. 23.06.2023. Бюл. № 18.
5. Nappo C.J. An Introduction to Atmospheric Gravity Waves. England: Academic press, 2002. 300 p.
6. Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10, N 4. P. 496–509.
7. Кравцов Ю.А., Саичев А.И. Эффекты двукратного прохождения волн в случайно неоднородных средах // Успехи физ. наук. 1982. Т. 137, вып. 3. С. 501–527.
8. Воробьев В.В. О применимости асимптотических формул восстановления параметров «оптической» турбулентности из данных импульсного лидарного зондирования. I. Уравнения // Оптика атмосф. и океана. 2016. Т. 29, № 10. С. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
9. Лазерный контроль атмосферы / под ред. Э.Д. Хинкли. М.: Мир, 1979. 416 с.
10. Squire H.B. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls // Proc. Roy. Soc. London. Ser. A. 1933. V. 142, N 847. P. 621–628.
11. Татарский В.И. Распространение волн в турбулентной атмосфере. М: Наука, 1967. 548 с.