Vol. 37, issue 01, article # 8

Razenkov I. A. Sounding of Kelvin–Helmholtz waves by a turbulent lidar. II. Lidar BSE-5. // Optika Atmosfery i Okeana. 2024. V. 37. No. 01. P. 61–72. DOI: 10.15372/AOO20240108 [in Russian].
Copy the reference to clipboard
Abstract:

In continuation of the first part of the work, experimental results of Kelvin–Helmholtz wave sounding with an UV BSE-5 lidar (355 nm), with the sensitivity higher than that of BSE-4 lidar (532 nm), are presented. Experiments on atmospheric sounding with the BSE-5 lidar were carried out in the winter-spring period over a built-up area, which is a “heat island". Improved lidar parameters in combination with thermal conditions in the atmospheric boundary layer, which is mainly stable stratified in the cold season, enables us to acquire new data on the shape of Kelvin–Helmholtz waves. It is ascertained that echo signals in both receiving channels of the lidar decrease by 30% after a sounding laser beam passes a turbulence intensity peak at the top of the wave arc. This effect of the atmosphere on echo signals of the turbulent lidar can be explained by beam broadening due to multiple scattering on random inhomogeneities of the medium.

Keywords:

turbulent lidar, backscatter enhancement effect, Kelvin–Helmholtz instability, atmospheric turbulence

References:

1. Razenkov I.A. Zondirovanie voln Kel'vina–Gel'mgol'tsa turbulentnym lidarom. I. Lidar UOR-4 // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 910–920. DOI: 10.15372/AOO20231106.
2. Razenkov I.A. Analiz tekhnicheskikh reshenij pri proektirovanii turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 766–776; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158.
3. Shakina N.P., Ivanova A.R. Prognozirovanie meteorologicheskikh uslovij dlya aviatsii. M.: TRIADA LTD, 2016. 312 p.
4. Sposob i lidarnaya sistema dlya operativnogo obnaruzheniya turbulentnosti v yasnom nebe s borta vozdushnogo sudna: Pat. 2798694. Rossiya, MKP, G01S 17/95. Razenkov I.A., Belan B.D., Rynkov K.A., Ivlev G.A.; Feder. gos. byud. uchr. nauki Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2023106962; Zayavl. 23.03.2023; Opubl. 23.06.2023. Byul. N 18.
5. Nappo C.J. An Introduction to Atmospheric Gravity Waves. England: Academic press, 2002. 300 p.
6. Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10, N 4. P. 496–509.
7. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prokhozhdeniya voln v sluchajno neodnorodnykh sredakh // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
8. Vorob’ev V.V. O primenimosti asimptoticheskikh formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannykh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
9. Lazernyj kontrol' atmosfery / pod red. E.D. KHinkli. M.: Mir, 1979. 416 p.
10. Squire H.B. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls // Proc. Roy. Soc. London. Ser. A. 1933. V. 142, N 847. P. 621–628.
11. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M: Nauka, 1967. 548 p.