Vol. 36, issue 06, article # 4

Shikhovtsev M. Yu., Obolkin V. A., Khodzher T. V., Molozhnikova E. V. Variability of the ground concentration of particulate particles PM1 – PM10 in the air basin of the southern Baikal region. // Optika Atmosfery i Okeana. 2023. V. 36. No. 06. P. 448–454. DOI: 10.15372/AOO20230604 [in Russian].
Copy the reference to clipboard
Abstract:

The paper presents the results of studies of the content of particulate matter PM1  PM10 in the atmosphere of the western coast of South Baikal with high temporal resolution. It has been established that PM are emitted into the atmosphere of Southern Baikal from both anthropogenic and natural sources. In winter, the influence of thermal power engineering increases, as evidenced by synchronous increases in the concentrations of submicron aerosol PM1 and sulfur dioxide. In summer, remote forest fires make a significant contribution to atmospheric pollution with particulate matter. The relationship between the increase in the concentration of PM1 in the atmosphere in the region under study and mesometeorological features (temperature inversions and mesoscale transfer of plumes from large thermal power plants) has been revealed. Increases in PM1 concentrations in most cases occur during the night and morning hours, which is associated with a decrease in the thickness of the atmospheric boundary layer.

Keywords:

South Baikal, HYSPLIT, atmospheric monitoring, particulate matter (PM), inversions

Figures:
References:

1. Southerland V.A., Brauer M., Mohegh A., Hammer M.S., van Donkelaar A., Martin R.V., Apte J.S., Anenberg S.C. Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: Estimates from global datasets // Lancet Planet. Health. 2022. V. 6, N 2. P. e139–e146.
2. Tiotiu A.I., Novakova P., Nedeva D., Chong-Neto H.J., Novakova S., Steiropoulos P., Kowal K. Impact of air pollution on asthma outcomes // Int. J. Environ. Res. Publ. Health. 2020. V. 17, N 17. P. 6212.
3. Chang T., Graff Zivin J., Gross T., Neidell M. Particulate pollution and the productivity of pear packers // Am. Econ. J.: Econ. Policy. 2016. V. 8, N 3. P. 141–169.
4. Aragon F.M., Miranda J.J., Oliva P. Particulate matter and labor supply: The role of caregiving and non-linearities // J. Environ. Econ. Manag. 2017. V. 86. P. 295–309.
5. Kovadlo P., Shikhovtsev A., Lukin V., Kochugova E. Solar activity variations inducing effects of light scattering and refraction in the Earth's atmosphere // J. Atmos. Sol.-Terr. Phys. 2018. V. 179. P. 468–471. DOI: 10.1016/j.jastp.2018.06.001.
6. Shi Y., Chen J., Hu D., Wang L., Yang X., Wang X. Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility // Sci. Total Environ. 2014. V. 473. P. 99–206.
7. Gharibzadeh M., Bidokhti A.A., Alam K. The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications // Atmos. Environ. 2021. V. 245. P. 118015.
8. Liu J., Guo Z., Zhou L., Wang L., Wang J., Yan Q., Hua D. Inversion and analysis of aerosol optical properties and lidar ratios based on sky-radiometer and Raman lidar measurements in Xi'an, China // Front. Environ. Sci. 2022. V. 10. P. 2082.
9. Pandya S., Gadekallu T.R., Maddikunta P.K.R., Sharma R. A study of the impacts of air pollution on the agricultural community and yield crops (Indian context) // Sustainability. 2022. V. 14, N 20. P. 13098.
10. Hoffman S., Jasiński R. The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland // Atmosphere. 2023. V. 14. P. 96.
11. Li Y., Chen Q., Zhao H., Wang L., Tao R. Variations in PM10, PM2.5, and PM1.0 in an urban area of the Sichuan Basin and their relation to meteorological factors // Atmosphere. 2015. V. 6, N 1. P. 150–163.
12. Wei J., Li Z., Lyapustin A., Sun L., Peng Y., Xue W., Cribb M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications // Remote Sens. Environ. 2021. V. 252. P. 112136.
13. Kurnaz G., Demir A.S. Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya // Urban Climate. 2022. V. 41. P. 101051.
14. Eren B., Aksangür İ., Erden C. Predicting next hour fine particulate matter (PM2.5) in the Istanbul Metropolitan City using deep learning algorithms with time windowing strategy // Urban Clim. 2023. V. 48. P. 101418.
15. Ivlev L.S. Mekhanizmy obrazovaniya i raspada atmosfernykh aerozolei i oblachnosti i ikh ekologicheskoe znachenie // Biosfera. 2013. V. 5, N 2. P. 182–210.
16. Mayer K.J. Wang X., Santander M.V., Mitts B.A., Sauer J.S., Sultana C.M., Prather K.A. Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation // ACS Central Sci. 2020. V. 6, N 12. P. 2259–2266.
17. Bizin M.A., Popova S.A., Kutsenogii K.P. Vliyanie lesnykh pozharov na massovuyu kontsentratsiyu, dispersnyi i khimicheskii sostav atmosfernogo aerozolya v regional'nom masshtabe // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 484–489.
18. Søreide J.E., Leu E.V., Berge J., Graeve M., Falk-Petersen S. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic // Glob. Change Biol. 2010. V. 16, N 11. P. 3154–3163.
19. Popovicheva O.B., Shonija N.K., Persiantseva N., Timofeev M., Diapouli E., Eleftheriadis K., Borgese L., Nguyen X.A. Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam // Aerosol. Atmos. Chem. 2017. V. 17. P. 2762–2779.
20. Ji X., Qin R., Shi C., Yang L., Yao L., Deng S., Jiang G. Dynamic landscape of multi-elements in PM2.5 revealed by real-time analysis // Environ. Int. 2022. V. 170. P. 107607.
21. Amil N., Latif M.T., Khan M.F., Mohamad M. Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment // Atmos. Chem. Phys. 2016. V. 16, N 8. P. 5357–5381. https:// acp.copernicus.org / articles / 16 / 5357 / 2016 / acp-16-5357- 2016.pdf.
22. Shikhovtsev A.Y., Kovadlo P.G., Lezhenin A.A., Korobov O.A., Kiselev A.V., Russkikh I.V., Kolobov D.Y., Shikhovtsev M.Y. Influence of atmospheric flow structure on optical turbulence characteristics // Appl. Sci. 2023. V. 13, N 3. P. 1282.
23. Obolkin V., Molozhnikova E., Shikhovtsev M., Netsvetaeva O., Khodzher T. Sulfur and nitrogen oxides in the atmosphere of Lake Baikal: Sources, automatic monitoring, and environmental risks // Atmosphere. 2021. V. 12, N 10. P. 1–10. DOI: 10.3390/atmos12101348.
24. Marinaite I. Penner I., Molozhnikova E., Shikhovtsev M., Khodzher T. Polycyclic aromatic hydrocarbons in the atmosphere of the Southern Baikal Region (Russia): Sources and relationship with meteorological conditions // Atmosphere. 2022. V. 13, N. 3. P. 420.
25. Shikhovtsev M.Yu., Molozhnikova Y.V. Inter-annual dynamics of regional and transboundary transport of air masses of the Baikal region for 2010–2018 // Proc. SPIE. 2020. V. 11560. P. 1–8. DOI: 10.1117/12.2574735.
26. Tiwari S., Bisht D.S., Srivastava A.K., Pipal A.S., Taneja A., Srivastava M.K., Attri S.D. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India // Atmos. Res. 2014. V. 145. P. 45–56.
27. Shikhovtsev M.Y., Molozhnikova Y.V. Inter-annual dynamics of regional and transboundary transport of air masses of the Baikal region for 2010–2018 // Proc. SPIE. 2020. V. 11560. P. 1318–1324.
28. Molozhnikova Y.V. Shikhovtsev M.Y., Popova A.K., Obolkin V.A., Khodzher T.V. Comparative analysis of satellite and continuous surface measurements of gas impurities in the air basin at the Listvyanka station, Lake Baikal // Proc. SPIE. 2022. V. 12341. P. 1048–1052.
29. Liu Z., Hu B., Wang L., Wu F., Gao W., Wang Y. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study // Environ. Sci. Pollut. Res. 2015. V. 22. P. 627-642.
30. Marinaite I.I., Potyomkin V.L., Molozhnikova E.V., Penner I.E., Shikhovtsev M.Yu., Izosimova O.N., Khodzher T.V. Polycyclic aromatic hydrocarbons and PM10 solid particles above the water area of Lake Baikal in the summer of 2020 // Proc. SPIE. 2021. V. 11916. 119161R. P. 1–6. DOI: 10.1117/12.2600470.
31. Zhang M., Jia J., Wang B., Zhang W., Gu Ch., Zhang X., Zhao Yu. Source apportionment of fine particulate matter during the day and night in Lanzhou, NW China // Int. J. Environ. Res. Public Health. 2022. V. 19, N 12. P. 7091.
32. Kirillova E.N., Andersson A., Han J., Lee M., Gustafsson Ö. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China // Atmos. Chem. Phys. 2014. V. 14, N 3. P. 1413–1422.
33. Bagtasa G., Cayetano M.G., Yuan C.S. Seasonal variation and chemical characterization of PM2.5 in northwestern Philippines // Atmos. Chem. Phys. 2018. V. 18, N 7. P. 4965–4980.
34. Amonov M., Nishonov B. Seasonal variability of PM concentration in Tashkent // IOP Conf. Series: Mater. Sci. Eng. 2020. V. 869, N 2. P. 022030.
35. Rouf M.A., Nasiruddin M., Hossain A., Islam M. Trend of particulate matter PM2.5 and PM10 in Dhaka City // Bangladesh J. Sci. Industrial Res. 2011. V. 46, N 3. P. 389–398.
36. Yousefian F., Faridi S., Azimi F., Aghaei M., Shamsipour M., Yaghmaeian K., Sadegh Hassanvand M. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017 // Sci. Report. 2020. V. 10, N 1. P. 1–11.
37. Bisht D.S., Srivastava A.K., Pipal A.S., Srivastava M.K., Pandey A.K., Tiwari S., Pandithurai G. Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: Physical and chemical properties // Environ. Sci. Pollut. Res. 2015. V. 22. P. 5293–5304.
38. Obolkin V.A., Potemkin V.L., Makukhin V.L., Chipanina Y.V., Marinayte I.I. Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal region // Int. J. Environ. Stud. 2014. V. 71, N 3.
39. Shikhovtsev A., Kovadlo P., Lukin V., Nosov V., Kiselev A., Kolobov D., Kopylov E., Shikhovtsev M., Avdeev F. Statistics of the optical turbulence from the micrometeorological measurements at the Baykal Astrophysical Observatory Site // Atmosphere. 2019. V. 10. P. 661. DOI: 10.3390/atmos10110661.
40. Shikhovtsev A.Y., Kiselev A.V., Kovadlo P.G., Kolobov D.Y., Lukin V.P., Tomin V.E. Metod opredeleniya vysot turbulentnykh sloev v atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 994–1000; Shikhovtsev A.Y., Kiselev A.V., Kovadlo P.G., Kolobov D.Y., Lukin V.P., Tomin V.E. Method for estimating the altitudes of atmospheric layers with strong turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 295–301.
41. Shikhovtsev A.Yu. Metod opredeleniya kharakteristik opticheskoi turbulentnosti po luchu zreniya astronomicheskogo teleskopa // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 74–80; Shikhovtsev A.Yu. Method of determing optical turbulence characteristics by the line of sight of an astronomical telescope // Atmos. Ocean. Opt. 2022. V. 35, N 3. P. 303–309.