Today, the gas-adsorption porosimetry technique is standard for determining the pore sizes of nanoporous materials. However, it requires liquid nitrogen, and measurements take a long time.
We have suggested a spectroscopic technique for determining the pore diameters of nanoporous silicon materials from the absorption spectra of water adsorbed in a material (Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 542–546). In this work, this technique is used to measure the pore size of zeolites. The pore sizes of five samples are estimated with the use of the regression analysis. The values obtained by the spectroscopic technique are in a good agreement with measurements by the standard one: the error of the spectroscopic technique is less than 10%. In terms of speed, the spectroscopic technique exceeds the standard one by dozens of times. The spectroscopic technique can also be applied to determining the static water capacity of materials.
Fourier spectroscopy, absorption spectrum, nanopores, porosimetry
1. Sinitsa L.N., Emel’yanov N.M., Shcherbakov A.P., Lugovskoi A.A., Annenkov V.V. Opredelenie razmera por kremnievykh materialov po IK-spektram adsorbirovannoj vody // Optika atmosf. i okeana. 2021. V. 34, N 7. P. 483–487; Sinitsa L.N., Emel’yanov N.M., Shcherbakov A.P., Lugovskoi A.A., Annenkov V.V. Estimation of silica material pore sizes from IR spectra of adsorbed water // Atmos. Ocean. Op. 2021. V. 34, N 6. P. 542–546.
2. Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors // Appl. Opt. 2016. V. 55, N 17. P. 4763–4768.
3. Panchenko M.V., Kabanov M.V., Pkhalagov Yu.A., Belan B.D., Kozlov V.S., Sakerin S.M., Kabanov D.M., Uzhegov V.N., Shchelkanov N.N., Pol’kin V.V., Terpugova S.A., Tolmachev G.N., Yausheva E.P., Arshinov M.Yu., Simonenkov D.V., Shmargunov V.P., Chernov D.G., Turchinovich Yu.S., Pol’kin Vas.V., Zhuravleva T.B., Nasrtdinov I.M., Zenkova P.N. Kompleksnye issledovaniya troposfernogo aerozolya v IOA SO RAN (etapy razvitiya) // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 703–716; Panchenko M.V., Kabanov M.V., Pkhalagov Yu.A., Belan B.D., Kozlov V.S., Sakerin S.M., Kabanov D.M., Uzhegov V.N., Shchelkanov N.N., Pol’kin V.V., Terpugova S.A., Tolmachev G.N., Yausheva E.P., Arshinov M.Yu., Simonenkov D.V., Shmargunov V.P., Chernov D.G., Turchinovich Yu.S., Pol’kin Vas.V., Zhuravleva T.B., Nasrtdinov I.M., Zenkova P.N. Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages) // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 27–41.
4. Tutov E.A., Andryukov A.Yu., Bormontov E.N. Adsorbtsionno-emkostnaya porometriya // Fizika i tekhnika poluprovodnikov. 2001. V. 35, N 9. P. 850–853.
5. Sposob izmereniya razmera por gidrofil'nykh materialov: Patent N 2150101 RF, MPK G01N15/08. Sinitsa L.N., Shcherbakov A.P., Emel'yanov N.M., Lugovskoj A.A. Zayavl. 22.03.2021; Opubl. 01.11.21.
6. Vander Auwera J., Ngo N.H., El Hamzaoui H., Capoen B., Bouazaoui M., Ausset P., Boulet C., Hartmann J.-M. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule–surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 88, N 4. P. 042506.
7. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Spektroskopicheskaya nanoporometriya aerogelya // Pis'ma v ZhETF. 2015. V. 101. P. 68–70.
8. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, N 2. P. 147–154.
9. Sinitsa L.N., Lugovskoy A.A. Dynamic registration of the absorption spectrum of water in the SiO2 nanopores in high frequency range // J. Chem. Phys., 2010. V. 133, N 20. P. 204506-1–5.
10. Sinitsa L.N., Serdyukov V.I., Danilyuk A.F., Lugovskoi A.A. Observation of water dimers in nanopores of silicon aerogel // JETP Lett. 2015. V. 102, N 1. P. 32–35.
11. Treacy M.M., Higgins J.B. Collection of Simulated XRD Powder Patterns for Zeolites. 5th Revised Edition. Elsevier, 2007.
12. King M. Powder Diffraction File-Hanawalt Search Manual Inorganic Phases. Pennsylvania: International Centre for Diffraction Data, 1994.
13. GOST 23401-90. Poroshki metallicheskie. Katalizatory i nositeli. Opredelenie udel'noj poverkhnosti. M.: Izd-vo standartov, 1992. 12 p.
14. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. V. 60, N 2. P. 309–319.
15. Greg S., Sing K. Adsorbtsiya, udel'naya poverkhnost', poristost'. M.: Mir, 1984. 306 p.
16. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. V. 73, N 1. P. 373–380.
17. Vyacheslavov A.S., Pomerantseva E.A., Gudilin E.A. Izmerenie ploshchadi poverkhnosti i poristosti metodom kapillyarnoj kondensatsii azota // Metodicheskie rekomendatsii. M., 2006.
18. Eshchenko L.S. Tekhnologiya katalizatorov i adsorbentov. Minsk: BGTU, 2015. 76 p.