Том 37, номер 03, статья № 1

Минин И. В., Минин О. В. Суперрезонанс: открытие, которое не было сделано более 100 лет назад. // Оптика атмосферы и океана. 2024. Т. 37. № 03. С. 187–195. DOI: 10.15372/AOO20240301.
Скопировать ссылку в буфер обмена
Аннотация:

Теория Лоренца–Ми, описывающая рассеяние света сферическими частицами, была создана в 1908 г. Тем не менее большинство открытий, сделанных в течение последних 30 лет (например, фотонные струи, резонанс Фано, оптические анаполи, оптические вихри, акустические струи), могут быть описаны в рамках этой теории – они были «зашифрованы» в формулах Лоренца–Ми и фактически просто ждали, пока кто-нибудь их «расшифрует». В статье кратко рассмотрен новый эффект – суперрезонанс (и сопутствующий ему резонанс Фано крайне высокого порядка) в диэлектрических мезоразмерных сферах. Суперрезонанс позволяет генерировать магнитные поля с гигантской интенсивностью в «горячих точках» (полюсах) диэлектрической сферы. Этот эффект также можно объяснить с помощью теории Лоренца–Ми, однако он оставался скрытым внутри точного решения этой теории в течение почти 120 лет!

Ключевые слова:

теория Ми, резонанс Фано высокого порядка, мезоразмерная сферическая частица, мезотроника, суперрезонанс, гигантские магнитные поля

Список литературы:

1. Хвостиков И.А. Теория рассеяния света и ее применение к вопросам прозрачности атмосферы и туманов // Успехи физ. наук. 1940. № 24. С. 165–227.
2. Розенберг Г.В. Рассеяние света в земной атмосфере (Очерк к 150-летию открытия Араго поляризации света дневного неба и 100-летию открытия Гови поляризации света при рассеянии) // Успехи физ. наук. 1960. № 71. С. 173–213.
3. Rayleigh L. XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky // Philos. Mag. 1899. V. 47, N 287. P. 375–384.
4. Young A.T. Rayleigh scattering // Phys. Today. 1982. V. 35, N 1. P. 42–48.
5. Keen B., Porter A. On the diffraction of light by particles comparable with the wavelength // Roy. Soc. Proc. A. 1913. V. 89. P. 370.
6. Mie G. Beitrage zur Optik truber Medien speziell kolloidaler Goldlosungen (Сontributions to the optics of diffuse media, especially colloid metal solutions) // Ann. Phys. 1908. V. 25. P. 377–445.
7. Optical Effects Associated with Small Particles / R.K. Chang (Yale), P.W. Barber (Clarkson) (eds.). Singapore: World Scientific, 1988. 360 p.
8. Kerker M. The Scattering of Light and Other Electromagnetic Radiation. Elsevier Science, 2013. 688 p.
9. Luk’yanchuk B., Miroshnichenko A., Kivshar Y. Fano resonances and topological optics: An interplay of far- and near-field interference phenomena // J. Opt. 2013. V. 15. P. 073001.
10. Fano U. Effects of configuration interaction on intensities and phase shifts // Phys. Rev. 1961. V. 124. P. 1866–1878.
11. Bohren C., Huffman D. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1998. 530 p.
12. Fernandez-Dols J., Carrera P. Le bon dieu est dans le detail: Is smiling the recognition of happiness? // Behav. Brain Sci. 2010. V. 33, N 6. P. 446–447.
13. Minin O.V., Minin I.V. Optical phenomena in mesoscale dielectric particles // Photonics. 2021. V. 8, N 12. 591 p.
14. Luk’yanchuk B., Bekirov A., Wong Z., Minin I.V., Minin O.V., Fedyanin A. Optical phenomena in dielectric spheres with the size of several light wavelength (review) // Phys. Wave Phenomena. 2022. V. 30, N 5. P. 283–297.
15. Minin O.V., Minin I.V. Unusual optical effects in dielectric mesoscale particles // Proc. SPIE. 2022. P. 121930E. DOI: 10.1117/12.2634315.
16. Minin I.V., Minin O.V., Luk’yanchuk B.S. Mesotronic era of dielectric photonics // Proc. SPIE. 2022. DOI: 10.1117/12.2634133.
17. Tonkaev P., Kivshar Y. All-dielectric resonant metaphotonics: Opinion // Opt. Mater. Express. 2022. V. 12. P. 2879–2885.
18. Coe B., Olmos-Trigo J., Qualls D., Alexis M., Szczerba M., Abujetas D.R., Biswas M., Manna U. Unraveling dipolar regime and Kerker conditions in mid-index mesoscale dielectric materials // Adv. Opt. Mater. 2023. V. 11, N 3. P. 2202140.
19. Yue L., Yan B., Monks J., Dhama R., Jiang C., Minin O.V., Minin I.V., Wong Z. Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles // Sci. Rep. 2019. V. 9. P. 20224.
20. Richtmyer R.D. Dielectric resonators // J. Appl. Phys. 1939. V. 10. P. 391–398.
21. Minin I.V., Minin O.V., Cao Y., Yan B., Wong Z., Luk’yanchuk B. Photonic lenses with whispering gallery waves at Janus particles // Opto-Electron. Sci. 2022. N 1. P. 210008.
22. Vasista A.B., Dias E.J.C., de Abajo F.J.G., Barnes W.L. Role of symmetry breaking in observing strong molecule-cavity coupling using dielectric microspheres // Nano Lett. 2022. V. 22. P. 6737.
23. Lock J.A., Adler C.L., Hovenac E.A. Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: Semiclassical scattering theory analysis // J. Opt. Soc. Am. 2000. V. A17. P. 1846–1856.
24. Minin I.V., Minin O.V. Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit. Berlin: Springer, 2016. 75 p.
25. Minin O.V., Chen W.-Y., Chien S.-C., Cheng C.-H., Minin I.V., Liu C.-Y. In-plane subwavelength optical capsule for lab-on-a-chip nano-tweezers // Opt. Lett. 2022. V. 47. P. 794–797.
26. Minin O.V., Minin I.V., Cao Y. Time domain self-bending photonic hook beam based on freezing water droplet // Sci. Rep. 2023. V. 13. P. 7732.
27. Minin O.V., Minin I.V. The Photonic Hook. From Optics to Acoustics and Plasmonics. Berlin: Springer, 2021. 77 p.
28. Minin I.V., Minin O.V. Mesotronics: Some new, unusual optical effects // Photonics. 2022. V. 9. P. 762.
29. Kuznetsov A.I., Miroshnichenko A.E., Fu Y.H., JingBo Z., Luk’yanchuk B.S. Magnetic light // Sci. Rep. 2012. V. 2. P. 492.
30. Yue L., Wang Z., Yan B., Monks J., Joya Y., Dhama R., Minin O.V., Minin I.V. Super-enhancement focusing of teflon spheres // Ann. Phys. 2020. V. 532. P. 2000373.
31. Wanc Z., Luk’yanchuk B., Yue L., Yan B., Monks J., Dhama R., Minin O.V., Minin I.V., Huang S., Fedyanin A. High order Fano resonances and giant magnetic fields in dielectric microspheres // Sci. Rep. 2019. V. 9. P. 20293.
32. Calandrini E., Cerea A., De Angelis F., Zaccaria R., Toma A. Magnetic hot-spot generation at optical frequencies: From plasmonic metamolecules to all-dielectric nanoclusters // Nanophotonics. 2019. V. 8, N 1. P. 45.
33. Minin I.V., Minin O.V., Zhou S. High-order Fano resonance in a mesoscale dielectric sphere with a low refractive index // JETP Lett. 2022. V. 116, N 3. P. 144–148.
34. Minin O.V., Minin I.V., Zhou S. Superresonance in micron borosilicate glass sphere in optical range // Optoelectron. Instrum. Data Process. 2022. V. 58, N 5. P. 514–519.
35. Kaňuchová Z., Baratta G.A., Gorozzo M., Strazzulla G. Space weathering of asteroidal surfaces. Influence on the UV-Vis spectra // Astron. Astrophys. 2010. V. 517. P. A60.
36. Chyiek P., Pendleton J.D., Pinnick R.G. Internal and near-surface scattered field of a spherical particle at resonant conditions // Appl. Opt. 1985. V. 24, N 23. P. 3940.
37. Minin I.V., Minin O.V., Zhou S. Features of the generation of extreme electromagnetic fields in a mesoscale dielectric sphere with regard to the environment // Tech. Phys. Lett. 2022. V. 48, N 18. P. 41–44.
38. Minin O.V., Zhou S., Minin I.V. Generation of giant magnetic fields in a hollow mesoscale sphere // JETP Lett. 2023. V. 118, N 3. P. 197–203.
39. Minin O.V., Zhou S., Minin I.V. Optical super-resonances in mesoscale dielectric cenosphere: Giant magnetic field generations // Annalen der Physik. 2023. Р. 2300337. DOI: 10.1002/andp.202300337.
40. Ladutenko K., Pal U., Rivera A., Peсa-Rodrigue O. Mie calculation of electromagnetic near-field for a multilayered sphere // Comput. Phys. Commun. 2017. V. 214. P. 225–230.
41. Geints Y.E. Angular patterns of nonlinear emission in dye water droplets stimulated by a femtosecond laser pulse for LiDAR applications // Remote Sens. 2023. V. 15. P. 4004.
42. Kempf H., Sulzer P., Liehl A., Leitenstorfer A., Tenne R. Few-femtosecond phase-sensitive detection of infrared electric fields with a third-order nonlinearity // Commun. Phys. 2023. V. 6. P. 145.
43. Chowdhury D., Hill S., Barber P. Time dependence of internal intensity of a dielectric sphere on and near resonance // J. Opt. Soc. Am. A. 1992. V. 9, N 8. P. 1364–1373.
44. Mees L., Gouesbet G., Gréhan G. Scattering of laser pulses (plane wave and focused Gaussian beam) by spheres // Appl. Opt. 2001. V. 40. P. 2546–2550.
45. Mees L., Gréhan G., Gouesbet G. Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses // Opt. Commun. 2001. V. 194, N 1–3. P. 59–65.
46. Efimenko E., Malkov Y., Murzanev A., Stepanov A. Femtosecond laser pulse-induced breakdown of a single water microdroplet // J. Opt. Soc. Am. B. 2014. V. 31. P. 534.
47. Gao X., Areev A., Korzekwa R., Wang X., Shim B., Downer M. Spatio-temporal profiling of cluster mass fraction in a pulsed supersonic gas jet by frequency-domain holography // J. Appl. Phys. 2013. V. 114. P. 034903.
48. Favre C., Boutou V., Hill S., Zimmer W., Krenz M., Lambrecht H., Yu J., Chang R., Woeste L., Wolf J.-P. White-light nanosource with directional emission // Phys. Rev. Lett. 2002. V. 89. P. 035002.
49. Geints Y.E., Minin I.V., Minin O.V. Magnetic whispering-gallery super-resonance spoiling in a Drude–Kerr optical cavity // Opt. Commun. 2024. V. 554. P. 130149.
50. Trigub M.V., Vasnev N.A. Laser active optical systems based on copper bromide active medium for high contrast and power images active formation // Opt. Laser Technol. 2023. V. 161, N 5. P. 109147.
51. Кистенев Ю.В., Cuisset A., Романовский О.А., Жердева А.В. Исследование малых газовых составляющих на границе «водная поверхность – атмосфера» с использованием средств дистанционного и локального лазерного ИК-газоанализа. Обзор // Оптика атмосф. и океана. 2022. Т. 35, № 10. С. 799–810; Kistenev Yu.V., Cuisset A., Romanovskii O.A., Zherdeva A.V. A study of trace atmospheric gases at the water – atmosphere interface using remote and local IR laser gas analysis: A review // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S17–S29.
52. Garín M., Fenollosa R., Alcubilla R., Shi L., Marsal L.F., Meseguer F. All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region // Nat. Commun. 2014. V. 5. P. 3440.
53. Minin O.V., Minin I.V., Li Y., Han J. Improvement of IR pyroelectric detector performance in THz range using wavelength-scale sphere-based Terajet effect // PIER Lett. 2021. V. 101. P. 29–34.
54. Minin O.V., Minin I.V. Extreme effects in field localization of acoustic wave: Super-resonances in dielectric mesoscale sphere immersed in water // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 516. P. 012042.
55. Anderson V.C. Sound scattering from a fluid sphere // JASA. 1950. V. 22. P. 426–431.
56. Wickenhauser M., Burgdörfer J., Krausz F., Drescher M. Time resolved Fano resonances // Phys. Rev. Lett. 2005. V. 94. P. 023002.
57. Minin O.V., Zhou S., Minin I.V. High order unconventional Fano resonance in the time domain for a freezing water microdroplet // ArXiv: 5157800. 2023. DOI: 10.1364/opticaopen.24320959.v1.
58. Дацюк В.В., Измайлов И.А. Оптика микрокапель // Успехи физ. наук. 2001. Т. 171, № 10. С. 1117–1129.
59. Minin O.V., Cao Y., Minin I.V. Future green technology: A freezing water micro-droplet as an optical switch based on a time-domain photonic hook // Nanomaterials. 2023. N 13. P. 2168.
60. Xu H.-X. A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres // Phys. Lett. A. 2003. V. 312. P. 411–419.
61. Jones H.B. Faraday’s Life and Letters. Oxford: Longmans, Green & Co., 1870. 2 ed. V. II. P. 390–391.