Том 33, номер 04, статья № 1

pdf Лукашевская А. А., Перевалов В. И. Банк параметров спектральных линий молекулы H2S. // Оптика атмосферы и океана. 2020. Т. 33. № 04. С. 241–249. DOI: 10.15372/AOO20200401.
Скопировать ссылку в буфер обмена
Аннотация:

Представлен банк параметров спектральных линий основной изотопической модификации молекулы сероводорода (H232S), созданный на основе глобального моделирования центров и интенсивностей спектральных линий этой молекулы в рамках метода эффективных операторов. Параметры глобального эффективного гамильтониана и оператора эффективного дипольного момента были определены в результате их подгонки, соответственно, к экспериментальным центрам и интенсивностям спектральных линий, взятым из литературных источников. Банк данных покрывает спектральный диапазон 552,76–8424,32 см-1 и содержит рассчитанные значения следующих параметров спектральных линий: центр линии, ее интенсивность, энергии верхнего и нижнего состояний, коэффициент Эйнштейна для спонтанного испускания, а также статистические веса верхнего и нижнего состояний. Отсечка по величине интенсивности линий выбрана равной 10-28 см/мол. при T = 296 К. Всего в банке данных содержится ~ 88 тыс. спектральных линий. Он размещен на сайте ИОА СО РАН по адресу: ftp://ftp.iao.ru/pub/H2S/.

Ключевые слова:

сероводород, H232S, спектры высокого разрешения, параметры спектральных линий, глобальное моделирование, эффективный гамильтониан, оператор эффективного дипольного момента, банк параметров спектральных линий

Список литературы:

1. Brimblecombe P., Hammer C., Rodhe H., Ryaboshapko A., Boutron C.F. Human influence on the sulfur cycle // Evolution of the global biogeochemical sulphur cycle. Chichester, New York: John Wiley & Sons, Ltd., 1989. V. 39. P. 77–121.
2. Flaud J.M., Camy-Peyret C., Johns J.W.C. The far-infrared spectrum of hydrogen sulfide. The (000) rotational constants of H232S, H233S, and H234S // Can. J. Phys. 1983. V. 61. P. 1462–1473.
3. Irwin P.G.J., Toledo D., Garland R., Teanby N.A., Fletcher L.N., Orton G.A., Bezard B. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere // Nat. Astron. 2018. V. 2. P. 420–427.
4. Niemann H.B., Atreya S.L., Carignan G.R., Donahue T.H., Haberman J.A., Harpold D.N., Hartle R.E., Hunten D.M., Kasprzak W.T., Mahaffy P.R., Owen T.C., Way S.H. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer // J. Geophys. Res. 1998. V. 103. P. 22831–22845.
5. Kaltenegger L., Sasselov D. Detecting planetary geochemical cycles on exoplanets: Atmospheric signatures and the case of SO2 // Astrophys. J. 2010. V. 708, N 2. P. 1162–1167.
6. Yamada K.M.T., Klee S. Pure rotational spectrum of H2S in the far-infrared region measured by FTIR spectroscopy // J. Mol. Spectrosc. 1994. V. 166. P. 395–405.
7. Azzam A.A.A., Yurchenko S.N., Tennyson J., Martin M.A., Pirali O. Terahertz spectroscopy of hydrogen sulfide // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. P. 341–351.
8. Cazzoli G., Puzzarini C. The rotational spectrum of hydrogen sulfide: The H233S and H232S isotopologues revisited // J. Mol. Spectrosc. 2014. V. 298 (Suppl. C). P. 31–37.
9. Belov S.P., Yamada K.M.T., Winnewisser G., Poteau L., Bocquet R., Demaison J., Polyansky O., Tretyakov M.Y. Terahertz rotational spectrum of H2S // J. Mol. Spectrosc. 1995. V. 173. P. 380–390.
10. Lechuga-Fossat L., Flaud J.M., Camy-Peyret C., Johns J.W.C. The spectrum of natural hydrogen-sulfide between 2150 cm-1 and 2950 cm-1 // Can. J. Phys. 1984. V. 62. P. 1889–1923.
11. Brown L.R., Crisp J.A., Crisp D., Naumenko O.V., Smirnov M.A., Sinitsa L.N., Perrin A. The absorption spectrum of H2S between 2150 and 4260 cm-1: Analysis of the positions and intensities in the first (2ν2, ν1, and ν3) and second (3ν2, ν1 + ν2, and ν2 + ν3) triad regions // J. Mol. Spectrosc. 1998. V. 188. P. 148–174.
12. Ulenikov O.N., Malikova A.B., Koivusaari M., Alanko S., Anttila R. High resolution vibrational rotational spectrum of H2S in the region of the ν2 fundamental band // J. Mol. Spectrosc. 1996. V. 176. P. 229–235.
13. Brown L.R., Crisp J.A., Crisp D., Naumenko O.V., Smirnov M.A., Sinitsa L.N. The first hexad of interacting states of H2S molecule // Proc. SPIE. 1997. V. 3090. P. 111–113.
14. Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Absorption spectrum of H2S between 7200 and 7890 cm-1 // Proc. SPIE. 2004. V. 5396. P. 5396–5397.
15. Ulenikov O.N., Liu A.W., Bekhtereva E.S., Gromova O.V., Hao L.Y., Hu S.M. On the study of high-resolution rovibrational spectrum of H2S in the region of 7300–7900 cm-1 // J. Mol. Spectrosc. 2004. V. 226. P. 57–70.
16. Lane W.C., Edwards T.H., Gillis J.R., Bonomo F.S., Murcray F.J. Analysis of n2 of H2S // J. Mol. Spectrosc. 1982. V. 95. P. 365–380.
17. Strow L.L. Measurement and analysis of the ν2 band of H2S: Comparison among several reduced forms of the rotational Hamiltonian // J. Mol. Spectrosc. 1983. V. 97. P. 9–28.
18. Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulfide absorption spectrum in the 5700–6600 cm-1 spectral region // Proc. SPIE. 2004. V. 5311. P. 59–67.
19. Ulenikov O.N., Liu A.W., Bekhtereva E.S., Gromova O.V., Hao L.Y., Hu S.M. High-resolution Fourier transform spectrum of H2S in the region of the second hexade // J. Mol. Spectrosc. 2005. V. 234. P. 270–278.
20. Brown L.R., Naumenko O.V., Polovtseva E.R., Sinitsa L.N. Hydrogen sulfide absorption spectrum in the 8400–8900 cm-1 spectral region // Proc. SPIE. 2004. V. 5743. P. 1–7.
21. Vaittinen O., Biennier L., Campargue A., Flaud J.M., Halonen L. Local mode effects on the high-resolution overtone spectrum of H2S around 12500 cm-1 // J. Mol. Spectrosc. 1997. V. 184. P. 288–299.
22. Ulenikov O.N., Liu A.W., Bekhtereva E.S., Grebneva S.V., Deng W.P., Gromova O.V., Hu S.M. High resolution Fourier transform spectrum of H2S in the region of 8500–8900 cm-1 // J. Mol. Spectrosc. 2004. V. 228. P. 110–119.
23. Ding Y., Naumenko O.V., Hu S.M., Zhu Q., Bertseva E., Campargue A. The absorption spectrum of H2S between 9540 and 10000 cm-1 by intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser // J. Mol. Spectrosc. 2003. V. 217. P. 222–238.
24. Naumenko O.V., Campargue A. Local mode effects in the absorption spectrum of H2S between 10780 and 11330 cm-1 // J. Mol. Spectrosc. 2001. V. 209. P. 242–253.
25. Campargue A., Flaud J.M. The overtone spectrum of H2S near 13200 cm-1 // J. Mol. Spectrosc. 1999. V. 194. P. 43–51.
26. Grobklob R., Rai S.B., Stuber R., Demtroder W. Diode laser overtone spectroscopy of hydrogen sulfide // Chem. Phys. Lett. 1994. V. 229. P. 609–615.
27. Naumenko O.V., Campargue A. H2S: First observation of the (70 ±, 0) local mode pair and updated global effective vibrational Hamiltonian // J. Mol. Spectrosc. 2001. V. 210. P. 224–232.
28. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. DOI: 10.1016/j.jqsrt.2017.06.038.
29. Azzam A.A.A., Yurchenko S.N., Tennyson J., Naumenko O.V. Exomol line lists XVI: A hot line list for H2S // Mon. Not. R. Astron. Soc. 2016. V. 460. P. 4063–4074.
30. URL: http://www.exomol.com/data/molecules/H2S/ 1H2-32S/AYT2/ (last access: 12.01.2020).
31. Tyuterev Vl.G., Tashkun S.A., Schwenke D.W. An accurate isotopic invariant potential function of the hydrogen sulfide molecule // Chem. Phys. Lett. 2001. V. 348. P. 223–234.
32. Perevalov V.I., Lukashevskaya A.A. Parameterization of the effective dipole moment matrix elements in the case of the asymmetric top molecules. Application to NO2 molecule // Atmos. Ocean. Opt. 2015. V. 28. P. 17–23.
33. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Glushkov P.A., Scherbakov A.P., Horneman V.M., Sydow C., Maul C., Bauerecker S. Extended analysis of the high resolution FTIR spectra of H2MS (M = 32, 33, 34, 36) in the region of the bending fundamental band: The ν2 and 2ν2 − n2 bands: Line positions, strengths, and pressure broadening widths // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 76–98.
34. Fischer J., Gamache R.R., Goldman A., Rothman L.S., Perrin A. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 401–412.
35. Brown L.R., Naumenko O.V. Частное сообщение.
36. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Raspopova N.I., Belova A.S., Maul C., Sydow C., Bauerecker S. Experimental line strengths of the 5ν2 band of H232S in comparison with the results of "variational" calculation and HITRAN database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 243. P. 76–98. URL: https://doi.org/10.1016/j.jqsrt.2019.106812 (last access: 12.01.2020).