Том 27, номер 11, статья № 5

pdf Пташник И. В., Петрова Т. М., Пономарев Ю. Н., Солодов А. А., Солодов А. М. Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона. // Оптика атмосферы и океана. 2014. Т. 27. № 11. С. 970-975.
Скопировать ссылку в буфер обмена
Аннотация:

Проведены измерения поглощения инфракрасного излучения водяным паром в спектральном диапазоне 2000–8000 см–1. Регистрация спектров производилась с помощью IFS 125 HR Фурье-спектрометра при температуре 287 К и спектральном разрешении 0,03 см–1. Восстановлен спектр континуального поглощения водяного пара с привязкой к известному поглощению в окне 2500 см–1. Показано, что в рассмотренных условиях, в четырех исследованных окнах прозрачности величина континуума различается не более чем на 20%. Это находится в противоречии с моделью континуума MT_CKD, которая предсказывает гораздо большую изменчивость континуума в этих окнах прозрачности.

Ключевые слова:

континуум H2O, MT_CKD континуум, окна прозрачности, Фурье-спектроскопия

Список литературы:

1. Held I.M., Soden B.J. Water vapor feedback and global warming // Annu. Rev. Energy. Environ. 2000. V. 25. Р. 441–475.
2. Clough S.A., Iacono M.J., Moncet J.-L. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor // J. Geophys. Res. D. 1992. V. 97, N 14. Р. 15761–15785.
3. Kilsby C.G., Edwards D.P., Saunders R.W., Foot J.S. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons // Quart. J. Roy. Meteorol. Soc. 1992. V. 118, N 506. Р. 715–748.
4. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: brief history and recent developments // Surveys in Geophys. 2012. V. 33, N 3–4. Р. 535–555. DOI: 10.1007/s10712-011-9170-y.
5. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128, N 12. Р. 124313.
6. Bogdanova Ju.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. Р. 2298–2307.
7. Vigasin A.A. Water vapour continuous absorption in various mixtures: possible role of weakly bound complexes // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 64. Р. 25–40.
8. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: evidence for water dimers // Quart. J. Roy. Meteorol. Soc. 2004. V. 130, N 602. Р. 2391.
9. Daniel J.S., Solomon S., Kjaergaard H., Schofield D.P. Atmospheric water vapour complexes and the continuum // Geophys. Res. Lett. 2004. V. 31, N 6. Р. L06118.
10. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. Р. 831–852.
11. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. Р. 1286–1303.
12. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm–1 atmospheric windows // Phil. Trans. Roy. Soc. A. 2012. V. 370, N 1968. Р. 2578–2589. DOI: 10.1098/rsta. 2011.0234.
13. Mlawer E.J., Payne V.H., Moncet J-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2520–2556. DOI: 10.1098/rsta.2011.0295.
14. Baranov Yu.I., Lafferty W.J., Fraser G.T., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302.
15. Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapour continuum absorption at atmospheric temperatures // J. Chem. Phys. 2005. V. 122, N 11. P. 114309.
16. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. D16305.
17. Baranov Yu.I., Lafferty W.J. The water-vapour continuum and selective absorption in the 3 to 5 m spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. Р. 1304–1313.
18. Baranov Yu.I. The continuum absorption in H2O+N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. Р. 2281–2286.
19. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. Roy. Soc. A. 2012. V. 370, N 1968. Р. 2557–2577. DOI: 10.1098/rsta.2011.0218.
20. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shi-ne K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. Р. 23–35.
21. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for Low-Absorption Regions in the 1.6- and 2.1-μm Atmospheric Windows // J. Directed Energy. 2006. V. 2, N 2. Р. 151–161.
22. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 m transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. Р. 381–391.
23. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases // Atmos. Ocean. Opt. 2011. V. 24, N 6. Р. 593–595.
24. Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Chris Benner D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
25. Mitsel A.A., Ptashnik I.V., Firsov K.M., Fomin A.B. Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere // Atmos. Ocean. Opt. 1995. V. 8, N 11. P. 847–850.
26. Shillings A.J.L., Ball S.M., Barber M.J., Tennyson J., Jones R.L. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. V. 11, N 9. P. 4273–4287.
27. Newman S.M., Green P.D., Ptashnik I.V., Gardiner P.D., Coleman M.D., Mcpheat R.A., Smith R.M. Airborne and satellite remote sensing of the mid-infrared water vapour continuum // Phil. Trans. Roy. Soc. A. 2012. V. 370, N 1968. Р. 2611–2636. DOI: 10.1098/ /rsta.2011.0223.