This work studies the effect of the daily dynamics of turbulent processes on the daily dynamics of the electric field in the surface air layer. When modeling, the coefficient of turbulent diffusion within the electrode layer is specified as a stationary function of altitude in view of hydrodynamic concepts. A mathematical model of the dynamics of the electric field intensity in the surface air layer in the case of a turbulent electrode effect is suggested. The main equation of the model is the equation of the total current in the surface layer, which has been derived in the approximation of strong turbulent mixing and describes the electrodynamics of the surface layer under the combined action of local and global current generators. The work examines the non-stationary nature of turbulent exchange in order to confirm the previously identified effects in the daily dynamics of the electric field strength in the surface layer under stationary turbulence. To describe the daily dynamics of turbulent processes, gradient measurements in high-altitude conditions of the Elbrus region were used. Processing of the measurement data enables deriving the time dependence of the turbulent diffusion coefficient from the solution of the total current equation. Taking into account this dependence, the expression for the daily dynamics of the field strength was refined. Time shifts of the daily extremes, a change in their amplitude, and the appearance of additional extremes depending on the electric field strength have been established. All these effects are comparable to the global unitary variation and increase with the electric field strength. The results can be useful for solving a number of applied geophysical problems, in particular, monitoring the electric field of the atmosphere and analyzing atmospheric-electrical measurement data.
surface layer, atmosphere, turbulent diffusion, electrode layer, electric field
1. Morozov V.N. Atmosfernoe elektrichestvo // Atmosfera. Spravochnik (spravochnye dannye, modeli). L.: Gidrometeoizdat, 1991. P. 394–408.
2. Morozov V.N., Kupovykh G.V. Matematicheskoe modelirovanie global'noi atmosfernoi elektricheskoi tsepi i elektrichestva prizemnogo sloya. SPb.: Asterion, 2017. 307 p.
3. Adzhiev A.Kh., Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Timoshenko D.V. Sutochnye variatsii elektricheskogo polya v prizemnom sloe atmosfery // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 4. P. 452–461. DOI: 10.31857/S0002351521040027.
4. Shatalina M.V., Mareev E.A., Klimenko V.V., Kuterin F.A., Nikoll K.A. Eksperimental'noe issledovanie sutochnykh i sezonnykh variatsii atmosfernogo elektricheskogo polya // Izv. vuzov. Radiofiz. 2019. V. 62, N 3. P. 205–210.
5. Klovo A.G., Kupovykh G.V., Svidel'skii S.S., Timoshenko D.V. Modelirovanie global'nykh variatsii elektricheskogo polya v prizemnoi atmosfere // Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo. 2018. Iss. 662. P. 37–41.
6. Kupovykh G., Klovo A., Timoshenko D. The atmospheric electric field variations in the surface layer // Russian Open Conference on Radio Wave Propagation (RWP). 1–6 July 2019. IEEE. 2019. P. 580–583. DOI: 10.1109/RWP.2019.8810367.
7. Nagorskii P.M., Pustovalov K.N., Smirnov S.V. Cutochnye i sezonnye variatsii nevozmushchennogo elektricheskogo polya i ikh svyaz' s izmenchivost'yu geofizicheskikh velichin na yuge Zapadnoi Sibiri // Trudy Voenno-kosmicheskoi akademii im. A.F. Mozhaiskogo. 2022. N S685. P. 213–222.
8. Mauchly S.J. Studies in atmosphere electricity based on observations made on the Carnegie (1915–1921) // Researches of the Department of Terrestrial Magnetism. Washington: Carnegie Institution, 1926. P. 385–424.
9. Harrison R.G. The Carnegie curve // Surv. Geophys. 2013. V. 34, N 2. P. 209–232.
10. Nosov V.V., Lukin V.P., Kovadlo P.G., Nosov E.V., Torgaev A.V. Dokazatel'stvo gipotezy KHopfa o strukture turbulentnosti (pamyati Tatarskogo) // Optika atmosf. i okeana. 2023. V. 36, N 1. P. 12–18. DOI: 10.15372/AOO20230102.
11. Agafontsev M.V., Gerasimova L.O., Reino V.V., Shesternin A.N. Issledovanie konvektivnoi turbulentnosti nad nagretoi poverkhnost'yu metodom skorostnoi termografii // Optika atmosf. i okeana. 2023. V. 36, N 7. P. 584–590. DOI: 10.15372/AOO20230707.
12. Gorchakov G.I., Karpov A.V., Gushchin R.A., Datsenko O.I. Elektricheskie protsessy v vetropeschanom potoke na opustynennykh territoriyakh // Optika atmosf. i okeana. 2024. V. 37, N 6. P. 461–467. DOI: 10.15372/AOO20240603.
13. Orlenko L.R. Stroenie planetarnogo pogranichnogo sloya atmosfery. L.: Gidrometeoizdat, 1979. 270 p.
14. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki. M.: Nauka, 1999. 736 p.
15. Morozov V.N. Vliyanie generatorov elektricheskogo polya, deistvuyushchikh v verkhnikh sloyakh atmosfery na elektrichestvo prizemnogo sloya // Trudy GGO im. A.I. Voeikova. 2022. N 605. P. 58–91.
16. Morozov V.N. Raspredelenie elektricheskogo polya, sozdavaemogo ionosfernym generatorom, v nizhnikh sloyakh atmosfery // Trudy GGO im. A.I. Voeikova. 2012. N 565. P. 205–215.
17. Kalinin A.V., Grigor'ev E.E., Zрidkov A.A., Terent'ev A.M. Klassifikatsiya i svoistva reshenii sistemy uravnenii teorii klassicheskogo elektrodnogo effekta // Izv. vuzov. Radiofiz. 2013. V. 56, N 11, 12. P. 829–852.
18. Kalinin A.V., Slyunyaev N.N., Mareev E.A., Zрidkov A.A. Statsionarnye i nestatsionarnye modeli global'noi elektricheskoi tsepi: korrektnost', analiticheskie sootnosheniya, chislennaya realizatsiya // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 3. P. 355–364.
19. Mareev E.A., Volodin E.M. Variation of the global electric circuit and ionospheric potential in a general circulation model // Geophys. Res. Lett. 2014. V. 41, N 24. P. 9009–9016.
20. Pulinets S., Davidenko D. Ionospheric precursors of earthquakes and global electric circuit // Adv. Sp. Res. 2014. V. 53, N 5. P. 709–723.