Vol. 37, issue 10, article # 12

Konyaev P. A. Correlation algorithm for adaptive optics systems of solar telescopes. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 889–893. DOI: 10.15372/AOO20241012 [in Russian].
Copy the reference to clipboard
Abstract:

In adaptive optics systems (AOS) applied in astrophysics, normalized cross correlation (NCC) algorithm is widely used, usually in tracking and stabilization blocks, as well as for measuring the optical parameters of AOS, for example, local tilts in wavefront sensors (WFS). Due to the tendency to increase the apertures of modern telescopes and the improvement of the resolution of digital video cameras, the problem of increasing the speed of the NCC algorithm for real-time control calculations is relevant. The article proposes a modification of the NCC algorithm for measuring the displacement of images of extended objects of a static scene in adaptive atmospheric optics applications. This type of algorithm can be used in tracking systems to eliminate jitter of the entire image, as well as for measuring the wavefront phase in WFS. Due to the simplification of the reference frame normalization procedure, the algorithm wins in speed and can be used in AOS of large-aperture solar telescopes.

Keywords:

correlation algorithm, adaptive optics, atmospheric turbulence, solar telescope, wave front

References:

1. Ballesteros E., Collados M., Bonet J., Lorenzo F., Viera T., Reyes M. Two-dimensional, high spatial resolution, solar spectroscopy using a correlation tracker // Astron. Astrophys. Suppl. Ser. 1996. V. 115. P. 353–365.
2. Scharmer G.B., Dettori P., Lofdahl M.G., Shand M. Adaptive optics system for the new Swedish solar telescope // Proc. SPIE. 2002. V. 4853-52. DOI: 10.1117/ 12.460387.
3. Rimmele T.R., Marino J. Solar Adaptive Optics // Living Rev. Sol. Phys. 2011. V. 8, N 2. DOI: 10.12942/ lrsp-2011-2.
4. Rais M., Morel J.-M., Thiebaud C., Delvit J.-M., Facciolo G. Improving wavefront sensing with a Shack–Hartmann device // Appl. Opt. 2016. V. 55, N 28. P. 7836–7846. DOI: 10.1364/AO.55.007836.
5. Leese J.A., Novak C.S. An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation // J. Appl. Meteorol. 1971. V. 10. P. 118–132.
6. Barnea D.I., Silverman H.F. A class of algorithms for fast digital image registration // IEEE Trans. Comp. 1972. V. C-21. P. 179–186.
7. Lewis J.P. Fast template matching // Vision Interface 95, Canadian Image Processing and Pattern Recognition Society, Quebec City, Canada, May 15–19, 1995. P. 120–123. URL: https://www.researchgate.net/publication/242325076_Fast_Template_Matching (last access: 09.06.2024).
8. Hii A.J., Hann C.E., Chase J.G., Van Houten E.W. Fast normalized cross correlation for motion tracking using basis functions // Comput. Meth. Prog. Biomed. 2006. V. 82, N 2 P. 144–156. DOI: 10.1016/j.cmpb. 2006.02.007.
9. Lukin V.P., Botygina N.N., Emaleev O.N., Konyaev P.A. Wavefront sensors for adaptive optical systems // Meas. Sci. Rev. 2010. V. 10. P. 102–107. DOI: 10.1117/12.831133.
10. Berkefeld N., Schmidt D., Soltau D., Heidecke F., Fischer A. The adaptive optics system of the 1.5 m GREGOR Solar telescope – four years of operation // Proc. SPIE. 2016. V. 9909. P. 1–7. DOI: 10.1117/12.2232604.
11. Hartlieb S., Wang Z., Rudinger A., Haist T., Reichelt S. Large dynamic range Shack–Hartmann wavefront sensor based on holographic multipoint generation and pattern correlation // Opt. Engin. 2024. V. 63, N 2. P. 024107. DOI: 10.1117/1.OE.63.2.024107.
12. Konyaev P.A. Obrabotka tsifrovykh izobrazhenii dlya korrektsii atmosfernykh turbulentnykh iskazhenii v real'nom vremeni // Optika atmosf. i okeana. 2021. V. 34, N 7. P. 564–568. DOI: 10.15372/ AOO20210712; Konyaev P.A. Digital image processing for real-time correction of atmospheric turbulent distortions // Atmos. Ocean. Opt. 2022. V. 35, N 3. P. 197–201.