Vol. 37, issue 09, article # 8

Osipova O. P., Osipov E. Yu. Synoptic conditions for ablation of the Sygyktinsky Glacier (Kodar Range). // Optika Atmosfery i Okeana. 2024. V. 37. No. 09. P. 779–784. DOI: 10.15372/AOO20240908 [in Russian].
Copy the reference to clipboard
Abstract:

The influence of synoptic conditions at the 700 hPa isobaric surface on meteorological regime and melt of the Sygyktinsky glacier (Kodar Range) in the 2021 ablation season was studied. Totally 15 weather types were classified using the Jenkinson and Collison method. It was found that the most frequent types are cyclones (24%) and anticyclones (20%). A significant dependence of the meteorological regime of the glacier on synoptic conditions was revealed. Anticyclonic types are characterized by high temperatures and low relative humidity and cloudiness. For cyclonic types, the opposite relations are observed. It was found that the radiation regime on the glacier and its melting rate depend on synoptic conditions. The greatest contribution to melting was made by anticyclonic weather types (44%), and the least by cyclonic types (26%). The net radiation of the glacier in anticyclones was 2–2.5 times greater than in cyclones, and the ablation rate was 1.6–1.8 times greater. The differences between the energy fluxes used for glacier melting under different synoptic patterns are explained by the cloudiness. The different atmospheric circulation regimes over the Kodar significantly affected the deglaciation of the Kodar glaciers in recent decades.

Keywords:

Kodar Range, atmospheric circulation, glacier melting, Jenkinson and Collison classification

References:

1. Golovkova R.G., Denisova T.Ya., Tokmagambetov G.A. Vliyanie atmosfernoi tsirkulyatsii na energeticheskii rezhim i ablyatsiyu lednika Tuyuksu // Materialy glyatsiologicheskih issledovanii. 1986. N 58. P. 29–34.
2. Eriskovskaya L.A. Vliyanie klimaticheskikh izmenenii na oledenenie v vysokogornoi zone Zailiiskogo Alatau na primere lednika Tuyuksu // Gidrometeorologiya i ekologiya. 2003. V 4. N. 31–34.
3. Ananicheva M.D., Kononova N.K. Svyaz' temperatury vozdukha, osadkov i balansa massy lednikov s makrotsirkulyatsionnymi protsessami na severo-vostoke Sibiri i Polyarnom Urale // Materialy glyatsiologicheskikh issledovanii. 2007. V. 107. P. 58–67.
4. Shahgedanova M., Stokes C.R., Gurney S.D., Popovnin V. Interactions between mass balance, atmospheric circulation, and recent climate change on the Djankuat Glacier, Caucasus Mountains, Russia // J. Geophys. Res. 2005. V. 110. P. D04108. DOI: 10.1029/2004JD005213.
5. Toropov P.A., Aleshina M.A., Grachev A.M. Largescale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Int. J. Climatol. 2019. V. 39, N 12. P. 4703–4720. DOI: 10.1002/joc.6101.
6. Jenkinson A.F., Collison F.P. An initial climatology of gales over the North Sea // Synoptic Climatology Branch Memorandum. 1977. V. 62. P. 18.
7. Azorin-Molina C., Guijarro J.A., McVicar T.R., Vicente Serrano S.M., Chen D., Jerez S., Espírito Santo F. Trends of daily peak wind gusts in Spain and Portugal, 1961–2014 // J. Geophys. Res.: Atmos. 2016. V. 121. P. 1059–1078. DOI: 10.1002/2015JD024485.
8. Putniković S., Tošić I., Đurđević V. Circulation weather types and their influence on precipitation in Serbia // Meteorol. Atmos. Phys. 2016. V. 128. P. 649–662. DOI: 10.1007/s00703-016-0432-6.
9. Spellman G. An assessment of the Jenkinson and Collison synoptic classification to a continental mid-latitude location // Theor. Appl. Climatology. 2017. V. 128. P. 731–744. DOI: 10.1007/s00704-015-1711-8.
10. Gilabert J., Llasat M.C. Circulation weather types associated with extreme flood events in Northwestern Mediterranean // Int. J. Climatol. 2018. V. 38. P. 1864–1876. DOI: 10.1002/joc.5301.
11. Royé D., Lorenzo N., Martin-Vide J. Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015 // Nat. Hazards. 2018. V. 92. P. 857–884. DOI: 10.1007/s11069-018-3228-9.
12. Sarricolea P., Meseguer-Ruiz O., Martín-Vide J., Outeiro L. Trends in the frequency of synoptic types in central-southern Chile in the period 1961–2012 using the Jenkinson and Collison synoptic classification // Theor. Appl. Climatol. 2018. V. 134. P. 193–204. DOI: 10.1007/s00704-017-2268-5.
13. Miró J.R., Pepin N., Peña J.C., Martin-Vide J. Daily atmospheric circulation patterns for Catalonia (northeast Iberian Peninsula) using a modified version of Jenkinson and Collison method // Atmos. Res. 2020. V. 231. P. 104674. DOI: 10.1016/j.atmosres.2019.104674.
14. Spellman G., Bird D. Sunshine and solar power in the UK // Theor. Appl. Climatol. 2024. V. 155. P. 1989–2003. DOI: 10.1007/s00704-023-04711-x.
15. Osipova O.P., Osipov E.Yu. Vliyanie atmosfernykh protsessov na dinamiku lednikov Kodara // Geogr. prirod. resursov. 2023. N 4. P. 99–107. DOI: 10.15372/GIPR20230410.
16. Stokes C.R., Shahgedanova M., Evans I.S., Popovnin V.V. Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia // Glob. Planet. Change. 2013. V. 101. P. 82–96. DOI: 10.1016/j.gloplacha.2012.12.010.
17. Osipov E.Y., Osipova O.P. Mountain glaciers of southeast Siberia: Current state and changes since the Little Ice Age // Ann. Glaciol. 2014. V. 55, N 66. P. 167–176. DOI:10.3189/2014AoG66A135.
18. Osipov E.Yu., Osipova O.P., Vasilenko O.V. Meteorologicheskii rezhim Sygyktinskogo lednika (khrebet Kodar) v period ablyatsii // Lyod i sneg. 2021. V. 61, N 2. P. 179–194.
19. Osipov E.Y., Osipova O.P. Surface energy balance of the Sygyktinsky Glacier, south Eastern Siberia, during the ablation period and its sensitivity to meteorological fluctuations // Sci. Rep. 2021. V. 11, N 1. P. 21260. DOI: 10.1038/s41598-021-00749-x.
20. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. V. 77. P. 437–471. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
21. Osipova O.P., Osipov E.Y. Objective classification of weather types for the Eastern Siberia over the 1970–2020 period using the Jenkinson and Collison method // Atmos. Res. 2022. V. 277, N 106291. DOI: 10.1016/j.atmosres.2022.106291.
22. Antokhina O.Yu., Antokhin P.N., Devyatova E.V., Mordvinov V.I. Dinamicheskie protsessy v atmosfere, obuslovlivayushchie anomalii osadkov v Vostochnoi Sibiri i Mongolii v letnii period // Fundamental'naya i prikladnaya klimatologiya. 2018. V. 1. P. 10–27.
23. Ippolitov I.I., Kabanov M.V., Loginov S.V., Sokolov K.I., Kharyutkina E.V. Izmenchivost' sostavlyayushchikh teplovogo balansa poverkhnosti aziatskoi territorii Rossii v period sovremennogo global'nogo potepleniya // Optika atmosf. i okeana. 2011. V. 24, N 1. P. 22–29.
24. Komarov V.S., Nakhtigalova D.P., Il'in S.N., Lavrinenko A.V., Lomakina N.Ya. Klimaticheskoe raionirovanie territorii Sibiri po rezhimu obshchei i nizhnei oblachnosti kak osnova dlya postroeniya lokal'nykh oblachnykh modelei atmosfery. Part 2. Rezul'taty klimaticheskogo raionirovaniya // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 899–905.
25. Conway J.P., Abermann J., Andreassen L.M., Azam M.F., Cullen N.J., Fitzpatrick N., Giesen R.H., Langley K., MacDonell S., Mölg T., Radić V., Reijmer C.H., Sicart J.-E. Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments // Cryosphere. 2022. V. 16. P. 3331–3356. DOI: 10.5194/tc-16-3331-2022.