Vol. 37, issue 06, article # 6

Baklanov A. M., Protasov A. A., Stekleneva M. E., Valiulin S. V. Method for generating dry aerosol particles from a solution: the case of fluconazole. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 486–489. DOI: 10.15372/AOO20240606 [in Russian].
Copy the reference to clipboard
Abstract:

Infectious diseases affecting the respiratory system are currently a serious medical problem. One of the ways to increase the effectiveness of therapy for such diseases is targeted delivery of drugs. This approach requires the development of new methods for generating aerosols of drugs, with the help of which it is possible to obtain particles with sizes that allow them to penetrate into specified areas of the respiratory system. In this work, a method for generating dry aerosol particles based on ultrasonic spraying of a drug solution is proposed and implemented. Using the example of a solution of the medicinal antifungal substance fluconazole, it is shown that this method enables generating aerosol with a stable concentration and an average size of particles for more than 2 hours. The resulting aerosol has optimal inhalation parameters: size from 1 to 1.9 microns and count concentration of 70,000 ± 6500 cm-3. The presented method makes it possible to further study the biological effect of aerosols of drugs.

Keywords:

aerosol, particle generator, inhalation, fluconazole, aerosol optical spectrometer

References:

1. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Geneva: World Health Organization, 2022. 48 р.
2. Brown D.G., Denning D.W., Gown N.A., Levitz S.M., Netea M.G., White T.C. Hidden killers: human fungal infections // Sci. Trans. Med. 2012. V. 19, N 4. DOI: 10.1126/scitranslmed.3004404.
3. Rayens E., Norris K.A. Prevalence and healthcare burden of fungal infections in the United States, 2018 // Open Forum Infect. Dis. 2022. V. 9, N 1. DOI: 10.1093/ofid/ofab593.
4. McKeny P.T., Nessel T.A., Zito P.M. Antifungal Antibiotics. Treasure Island: StatPearls Publishing, 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK538168/ (last access: 23.01.2024).
5. Eremina N.V., Durnev A.D., Vasil'eva N.V., Bogomolova T.S. Farmakologicheskie misheni deistviya protivogribkovykh lekarstvennykh soedinenii i praktika sozdaniya novykh antimikotikov (obzor) // Problemy meditsinskoi mikologii. 2018. V. 20, N 2. P. 9–17.
6. Ivanova L.V., Barintsevich E.P., Sрlyakhto E.V. Rezistentnost' gribov-patogenov k antimikotikam (Obzor) // Problemy meditsinskoi mikologii. 2011. V. 13, N 1. P. 14–17.
7. Gao J., Karp J.M., Langer R., Joshi N. The future of drug delivery // Chem. Mater. 2023. V. 35, N 2. P. 359–363. DOI: 10.1021/acs.chemmater.2c03003.
8. Gao W., Chen Y., Zhang Y., Zhang Q., Zhang L. Nanoparticle-based local antimicrobial drug delivery // Adv. Drug. Deliv. Rev. 2018. V. 127. P. 46–57. DOI: 10.1016/j.addr.2017.09.015.
9. Wassif R.K., Elkayal M., Shamma R.N., Elkheshenb S.A. Recent advances in the local antibiotics delivery systems for management of osteomyelitis // Drug Delivery. 2021. V. 28, N 1. P. 2392–2414. DOI: 10.1080/10717544.2021.1998246.
10. Darquenne C. Aerosol deposition in health and disease // J. Aerosol Med. Pulm. Drug Delivery. 2012. V. 25, N 3. P. 140–147. DOI: 10.1089/jamp.2011.0916.
11. Valiulin S.V., Onischuk A.A., Baklanov A.M., Dubtsov S.N., Dultseva G.G., An’kov S.V., Tolstikova T.G., Belogorodtsev S.N., Schwartz Y.Sh. Studies of the specific activity of aerosolized isoniazid against tuberculosis in a mouse model // Antibiotics. 2022. V. 11, N 1527. P. 1–17. DOI: 10.3390/antibiotics11111527.
12. Dolovich M.B., Dhand R. Aerosol drug delivery: Developments in device design and clinical use // Lancet. 2011. V. 377. P. 1032–1045. DOI: 10.1016/S0140-6736(10)60926-9.
13. Mukherjee B., Paul P., Dutta L., Chakraborty S., Dhara M., Mondal L., Sengupta S. Chapter 14 – Pulmonary Administration of biodegradable drug nanocarriers for more efficacious treatment of fungal infections in lungs: Insights based on recent findings // Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Amsterdam: Elsevier, 2017. P. 261–280.
14. Raist P. Aerozoli. Vvedenie v teoriyu: per. s angl. M.: Mir, 1987. 278 з.
15. Pol'kin V.V. Uchet zavisimosti granits diapazonov razmerov chastits ot kompleksnogo pokazatelya prelomleniya materiala chastits v fotoelektricheskikh schetchikakh // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 442–446. DOI: 10.15372/AOO20170514.
16. Samoilova S.V. Sovmestnoe vosstanovlenie kompleksnogo pokazatelya prelomleniya i funktsii raspredeleniya chastits po razmeram po lidarnym izmereniyam: testirovanie razrabotannykh algoritmov // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 525–538; Samoilova S.V. Simultaneous reconstruction of the complex refractive index and the particle size distribution function from lidar measurements: Testing the developed algorithms // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 628–642. DOI: 10.1134/S1024856019060137.
17. Valiulin S.V., Onischuk A.A., Baklanov A.M., Dubtsov S.N., An'kov S.V., Shkil N.N., Nefedova E.V., Plokhotnichenko M.E., Tolstikova T.G., Dolgov A.M., Dultseva G.G. Aerosol inhalation delivery of cefazolin in mice: Pharmacokinetic measurements and antibacterial effect // Int. J. Pharm. 2021. V. 607. P. 121013. DOI: 10.1016/j.ijpharm.2021.121013.
18. Arms A.D., Travis C.C. Reference Physiological Parameters in Pharmacokinetic Modeling: Technical Report. Washington DC: U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, 1988. 130 p.