Vol. 37, issue 06, article # 12

Yakshina D. F., Golubeva E. N., Gradov V. S. Numerical simulation of summer warming of Siberian shelf seas depending on short-wave radiation parameterization. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 525–530. DOI: 10.15372/AOO20240612 [in Russian].
Copy the reference to clipboard
Abstract:

The main source of summer heating of the upper layer of the Siberian Arctic shelf seas is shortwave solar radiation. The radiation flux attenuates as it passes through the water column, and the attenuation rate is determined by the optical properties of water, depending mainly on the concentration of suspended matter in the water. In numerical models of the ocean and sea ice, the process of absorbation of shortwave solar radiation is described by various parameterizations. In the present work, the sensitivity of the regional 3D numerical ocean and sea ice model SibCIOM to two parameterizations of the penetrating radiation is studied: (1) two-component parameterization using constant attenuation coefficients for the infrared and visible parts of the spectrum depending on one of the 10 transparency classes of ocean waters; (2) a three-component one, with different absorption coefficients for the red, green, and blue parts of the visible spectrum and relying on satellite data on chlorophyll concentration. Analysis of the results of numerical experiments for the water area of the Siberian shelf seas has shown that taking into account the seasonal distribution of chlorophyll concentration when forming the flux of penetrating shortwave radiation leads to the formation of regions of water warming in the surface or bottom layer, which differ from the basic experiment with two-component parameterization.

Keywords:

numerical simulation, Siberian Shelf seas, parameterization of short-wave radiation, chlorophyll concentration, Arctic ocean

Figures:
References:

1. Vlasenkov R.E., Smirnov A.V., Makshtas A.P. Otsenka potentsial'nogo progreva poverkhnostnogo sloya morei Karskogo i Laptevykh v 2007 i 2008 years // Problemy Arktiki i Antarktiki. 2010. V. 85, N 2. P. 35–40.
2. Screen J.A., Bracegirdle T.J., Simmonds I. Polar climate change as manifest in atmospheric circulation // Curr. Clim. Change Rep. 2018. N 4. P. 383–395. DOI: 10.1007/s40641-018-0111-4.
3. Grosse G., Goetz S., McGuire A.D., Romanovsky V.E., Schuur E.A. Changing permafrost in a warming world and feedbacks to the earth system // Environ. Res. Lett. 2016. N 11. P. 040201. DOI: 10.1088/1748-9326/11/4/040201.
4. Vihma T. Effects of Arctic sea ice decline on weather and climate: A review // Surv. Geophys. 2014. N 35. P. 1175–1214. DOI: 10.1007/s10712-014-9284-0.
5. Semmler T., Mcgrath R., Wang S. The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes // Clim. Dyn. 2012. N 39. DOI: 10.1007/s00382-012-1353-9.
6. Park J.-Y., Kug J.-S., Bader J., Rolph R., Kwon M. Amplified Arctic warming by phytoplankton under greenhouse warming // Proc. Nat. Acad. Sci. USA. 2015. N 112. DOI: 10.1073/pnas.1416884112.
7. Lengaigne M., Menkes C., Aumont O., Gorgues T., Bopp L., André J.-M., Madec G. Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model // Clim. Dyn. 2007. N 28. P. 503–516. DOI: 10.1007/s00382-006-0200-2.
8. Golubeva E.N., Platov G.A. On improving the simulation of Atlantic water circulation in the Arctic // Ocean. J. Geophys. Res. 2007. N 112. P. C04S05. DOI: 10.1029/2006JC003734.
9. Golubeva E.N., Platov G.A. Chislennoe modelirovanie otklika Arkticheskoi sistemy okean-led na variatsii atmosfernoi tsirkulyatsii 1948–2007 years // Izvestiya RAN, Ser. Fiz. atmosf. i okeana. 2009. V. 45, N 1. P. 145–160. DOI: 10.1134/S0001433809010095.
10. Platov G.A. Chislennoe modelirovanie formirovaniya glubinnykh vod Severnogo Ledovitogo okeana. Part II: Rezul'taty regional'nykh i global'nykh raschetov // Izv. RAN. Fiz. atmosf. i okeana. 2011. V. 47, N 3. P. 409–425.
11. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanography. 1997. N 27. P. 1849–1867. DOI: 10.1016j.ocemod.2009.01.004.
12. Bitz C.M., Lipscomb W.H. An energy-conserving thermodynamic model of sea ice // J. Geophys. Res. 1999. N 104. P. 15669–15677. DOI: 10.1029/1999JC900100.
13. Lipscomb W.H., Hunke E.C. Modeling sea ice transport using incremental remapping // Mon. Weather Rev. 2004. N 132. P. 1341–1354. DOI: 10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.
14. Woodgate R. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data // Progr. Oceanogr. 2017. V. 160. DOI: 10.1016/j.pocean.2017.12.007.
15. Woodgate R., Peralta Ferriz C. Warming and freshening of the Pacific inflow to the Arctic from 1990–2019 implying dramatic shoaling in pacific winter water ventilation of the Arctic water column // Geophys. Res. Lett. 2021. V. 48, N 9. DOI: 10.1029/ 2021GL092528.
16. Golubeva E., Platov G., Malakhova V., Kraineva M., Iakshina D. Modelling the long-term and inter-annual variability in the Laptev Sea hydrography and subsea permafrost state // Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research 2018. V. 87, N 2. P. 195–210. DOI: 10.2312/polarforschung.87.2.195.
17. Golubeva E., Kraineva M., Platov G., Iakshina D., Tarkhanova M. Marine heatwaves in Siberian Arctic seas and adjacent region // Remote Sens. 2021. V. 13, N 21. DOI: 10.3390/rs13214436.
18. Paulson C.A., Simpson J.J. Irradiance measurements in the upper ocean // J. Phys. Oceanogr. 1977. N 7. P. 952–956. DOI: 10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.
19. Jerlov N.G. Optical Oceanography. Amsterdam: Elsevier, 1968. V. 5. 194 p.
20. Jerlov N.G. Marine Optics. Amsterdam: Elsevier Scientific Publ. Comp., 1976. 231 p.
21. Morel A. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters) // J. Geophys. Res. 1988. N 93. P. 10749–10768. DOI: 10.1029/jc093ic09p10749.
22. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. N 77. P. 437–471. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
23. Golubeva E.N., Platov G.A., Yakshina D.F. Chislennoe modelirovanie sovremennogo sostoyaniya vod i morskogo l'da Severnogo Ledovitogo okeana // Led i Sneg. 2015. V. 130, N 2. P. 81–92. DOI: 10.15356/2076-6734-2015-2-81-92.
24. Ocean color. URL: https://oceandata.sci.gsfc.nasa.gov/directdataaccess (last access: 12.01.2024).
25. Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G. Daily high-resolution-blended analyses for sea surface temperature // J. Clim. 2007. V. 20. P. 5473–5496. DOI: 10.1175/2007JCLI1824.1.