Vol. 37, issue 05, article # 1

Vasilenko I. A., Naumenko O. V. Expert assessment of the accuracy of determining the intensity of vibrational-rotational lines of water vapor in the HITRAN database in the range 2500–6500 cm-1. // Optika Atmosfery i Okeana. 2024. V. 37. No. 05. P. 363–369. DOI: 10.15372/AOO20240501 [in Russian].
Copy the reference to clipboard
Abstract:

An expert assessment of the accuracy codes for the intensities of rovibrational transitions of water vapor in the spectral range 2500–6500 cm-1 of the HITRAN2020 database has been carried out. From comparison with experimental data, the normalization coefficients of the variational calculation by Conway E.K., Gordon I.E., Kyuberis A.A., Polyansky O.L., Tennyson J., Zobov N.F. // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106711 were determined; for the absorption bands (001)–(000), (020)–(000), (011)–(000), and (110)–(000), they were 1.010, 1.007, 1.013, and 1.030, respectively. Using variational calculations and modeling based on the effective Hamiltonian approach, the analysis of experimental data from the HITRAN2020 database has been conducted, revealing less accurate values. Based on these results, an adjusted list of H216O absorption lines in the range 2500–6500 cm-1 has been constructed, which can be useful for natural experiments.

Keywords:

HITRAN2020 database, variational calculation, intensity of vibrational-rotational line

Figures:
References:

1. The HITRAN Database htpps://hitran.org.
2. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/j.jms.2021.111510.
3. Schwenke D.W., Partridge H. Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. 2000. V. 113. P. 6592. DOI: 10.1063/1.1311392.
4. Conway E.K., Gordon I.E., Kyuberis A.A., Polyansky O.L., Tennyson J., Zobov N.F. Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106711. DOI: 10.1016/j.jqsrt.2019.106711.
5. URL: https://hitran.org.H2O-S-73.
6. Lodi L., Tennyson J., Polyansky O.L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule // J. Chem. Phys. 2011. V. 135. P. 034113–034113-10. DOI: 10.1063/1.3604934.
7. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high-accuracy computed water line list // Mon. Not. R. Astron. Soc. 2006. V. 368. P. 1087–1094. DOI: 10.1111/j.1365-2966.2006.10184.x.
8. Polyansky O.L., Kyuberis A.A., Zobov N.F., Tennyso J., Yurchenko S.N., Lodi L. ExoMol molecular line lists XXX: A complete high-accuracy line list for water // Mon. Not. R. Astron. Soc. 2018. V. 480. P. 2597.
9. Voronin B.A., Tennyson J., Lodi L., Kozodoeva A.V. The VoTe room temperature H216O line list up to 25000 cm-1 // Opt. Spectrosc. 2019. V. 127. P. 967–973. DOI: 10.1134/S0030400X19120397.
10. Ovsyannikov R.I., Tretyakov M.Yu., Koshelev M.A., Galanina T.A. O neopredelennosti raschetnykh intensivnostei linii vodyanogo para v subteragertsevom diapazone chastot // Optika atmosf. i okeana. 2023. V. 36, N 7. P. 523–533; Ovsyannikov R.I., Tretyakov M.Yu., Koshelev M.A., Galanina T.A. On the uncertainty of the calculated intensities of water vapor lines in the sub-THz frequency range // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 601–612. DOI: 10.1134/S1024856023060131.
11. Toth R.A. Linelist of water vapor parameters from 500 to 8000 cm-1. USA, 2009. URL: https://mark4sun.jpl.nasa.gov/h2o.html (last access: 26.02.2024).
12. Loos J., Birk M., Wagner G. Measurement of positions, intensities and self-broadening line shape parameters of H2O lines in the spectral ranges 1850–2280 cm-1 and 2390–4000 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 119–132. DOI: 10.1016/j.jqsrt.2017.02.013.
13. Birk M., Wagner G., Loos J., Mondelain D., Campargue A. ESA SEOM-IAS–spectroscopic parameters database 2.3 mm region // Zenodo. 2017. DOI: 10.5281/zenodo.1009126.
14. Lodi L., Tennyson J. Line lists for H218O and H217O based on empirically-adjusted line positions and ab initio intensities // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 850–858. DOI: 10.1016/j.jqsrt.2012.02.023.
15. Solodov A.M., Petrova T.M , Solodov A.A., Deichuli V.M., Naumenko O.V. FT spectroscopy of water vapor in the 0.9 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 293. P. 108389. DOI: 10.1016/j.jqsrt.2022.108389.
16. Vasilchenko S.S., Mikhailenko S.N., Campargue A. Water vapor absorption in the region of the oxygen A-band near 760 nm // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 725. P. 451–455. DOI: 10.1016/j. jqsrt.2021.107847.
17. Vasilchenko S., Mikhailenko S.N., Campargue A. Cavity ring down spectroscopy of water vapour near 750 nm: A test of the HITRAN2020 and W2020 line lists // Mol. Phys. 2022. P. 2051762. DOI: 10.1080/00268976.2022.2051762.
18. Vasilenko I.A., Sinitsa L.N., Serdyukov V.I. Svetodiodnaya Fur'e-spektroskopiya N216O v diapazone 14800–15500 cm–1 // Optika atmosf. i okeana. 2024. V. 37, N 3. P. 196–202. DOI: 10.15372/AOO20240302.
19. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A. Analiz intensivnostei linii pogloshcheniya molekuly vody v IK-oblasti // Optika atmosf. i okeana. 2023. V. 36, N 8. P. 613–618. DOI: 10.15372/AOO20230801.
20. Flaud J.-M., Camy-Peyret C. Vibration-rotation intensities in H2O-type molecules. Application to the 2n2, n1, and n3 bands of H216O // J. Mol. Spectrosc. 1975. V. 55, N 1–3. P. 278–310. DOI: 10.1016/0022-2852(75)90270-2.