Room-temperature cavity ring-down spectra (CRDS) of hydrogen sulfide were recorded at three pressures of 10, 20, and 30 Torr in the 12950–13300 cm-1 range with a sensitivity on the order of 3 × 10-11 cm-1 in terms of the absorption coefficient and analyzed. The line positions and intensities are derived from these spectra. The theoretical simulation of these spectra was performed within the method of effective operators. The measured line positions and intensities are compared with the variational calculated values. Considerable difference between calculated (Azzam A.A.A., Yurchenko S.N., Tennyson J., Naumenko O.V. Exomol line lists XVI: A hot line list for H2S // Mon. Not. R. Astron. Soc. 2016. V. 460. P. 4063–4074) and observed line positions and intensities is found.
hydrogen sulfide, high resolution spectra, high sensitivity, spectral line parameters, effective Hamiltonian, effective dipole moment operator
1. Irwin P.G.J., Toledo D., Garland R., Teanby N.A., Fletcher L.N., Orton G.A., Bezard B. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere // Nat. Astron. 2018. V. 2. P. 420–427.
2. Niemann H.B., Atreya S., Carignan G., Donahue T., Haberma N.J., Harpold D., Hartle R., Hunten D., Kasprzak W., Mahaffy P., Owen T., Spencer N., Way S. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer // J. Geophys. Res. 1998. V. 103. P. 22831–22845.
3. Lukashevskaya A.A., Perevalov V.I. Bank parametrov spektral'nykh linij molekuly H2S // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 241–249; Lukashevskaya A.A., Perevalov V.I. Bank of spectral line parameters of the H2S molecule // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 449–458.
4. Chubb K.L., Naumenko O., Keely S., Bartolotto S., Macdonald S., Mukhtar M., Grachov A., White J., Coleman E., Liu A.-W., Fazliev A.Z., Polovtseva E.R., Horneman V.-M., Campargue A., Furtenbacher T., Császár A.G., Yurchenko S.N., Tennyson J. Marvel analysis of the measured high-resolution rovibrational spectra of H232S // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 178–186.
5. Azzam A.A.A., Tennyson J., Yurchenko S.N., Naumenko O.V. ExoMol molecular line lists – XVI. The rotation-vibration spectrum of hot H2S // Mon. Not. R. Astron. Soc. 2016. V. 460. P. 4063–4074.
6. Campargue A., Flaud J.M. The overtone spectrum of H2S near 13200 cm-1 // J. Mol. Spectrosc. 1999. V. 194. P. 43–51.
7. Kozin I., Jensen P. Fourfold сlusters of rovibrational energy levels for H2S studied with a potential energy surface derived from experiment // J. Mol. Spectrosc. 1994. V. 163. P. 483–509.
8. Bykov A., Naumenko O., Smirnov M., Sinitsa L., Brown L., Crisp J., Crisp D. The infrared spectrum of H2S from 1 to 5 μm // Can. J. Phys. 1994. V. 72. P. 989–999.
9. Ding Y., Naumenko O.V., Hu S.M., Zhu Q., Bertseva E., Campargue A. The absorption spectrum of H2S between 9540 and 10000 cm-1 by intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser // J. Mol. Spectrosc. 2003. V. 217. P. 222–238.
10. Naumenko O.V., Campargue A. Local mode effects in the absorption spectrum of H2S between 10780 and 11330 cm-1 // J. Mol. Spectrosc. 2001. V. 209. P. 242–253.
11. Flaud J.M., Grosskloss R., Rai S.B., Stuber R., Demtroder W., Tate D.A., Wang L.G., Gallagher T.F. Diode laser spectroscopy of H232S around 0.82 mm // J. Mol. Spectrosc. 1995. V. 172. P. 275–281.
12. Vaittinen O., Biennier L., Campargue A., Flaud J.M., Halonen L. Local mode effects on the high-resolution overtone spectrum of H2S around 12500 cm−1 // J. Mol. Spectrosc. 1997. V. 184. P. 288–299.
13. Flaud J., Vaittinen O., Campargue A. The H2S spectrum around 0.7 mm // J. Mol. Spectrosc. 1998. V. 190. P. 262–268.
14. Naumenko O.V., Campargue A. H2S: First observation of the (70 ± ,0) local mode pair and updated global effective vibrational Hamiltonian // J. Mol. Spectrosc. 2001. V. 210. P. 224–232.
15. Vasilchenko S.S., Kassi S., Lugovskoi A.A. Vysokochuvstvitel'nyj spektrometr vnutrirezonatornogo zatukhaniya dlya registratsii spektrov vysokogo razresheniya atmosfernykh gazov v oblasti 745–775 nm // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 68–71; Vasilchenko S.S., Kassi S., Lugovskoi A.A. High-sensitivity cavity ring-down spectrometer for high-resolution spectroscopy of atmospheric gases in the 745–775 nm region // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 274–277.
16. Romanini D., Kachanov A.A., Sadeghi N., Stoeckel F. CW cavity ring down spectroscopy // Chem. Phys. Lett. 1997. V. 264. P. 316–322.
17. Kassi S., Campargue A. Cavity ring down spectroscopy with 5 × 10-13 cm-1 sensitivity // J. Chem. Phys. 2012. V. 137. P. 234201.
18. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
19. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 199–203.
20. Lyulin О.М. Opredelenie parametrov spektral'nykh linij iz neskol'kikh spektrov pogloshcheniya s pomoshch'yu programmy MultiSpectrum Fitting computer code // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 408–416; Lyulin O.M. Determination of spectral line parameters from several absorption spectra with the MultiSpectrum Fitting Computer Code // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 487–495.
21. Bykov A.D., Naumenko O.V., Pshenichnikov A.M., Sinitsa L.N., Shcherbakov A.P. Ekspertnaya sistema dlya identifikatsii linij v kolebatel'no-vrashchatel'nykh spektrakh // Opt. i spektroskop. 2003. V. 94, N 4. P. 580–589.
22. Ulenikov O., Onopenko G., Koivusaari M., Alanko S., Anttila R. High resolution Fourier trasform spectrum of H2S in the 3300–4080 cm-1 region // J. Mol. Spectrosc. 1996. V. 176. P. 236–250.
23. Camy-Peyret C., Flaud J.-M. Vibration-rotation dipole moment operator for asymmetric rotors // // Molecular spectroscopy: Modern research. K. Narahari Rao (Ed.). Orlando: Academic Press, 1985. V. 3. P. 1–66.