Study of the state of the Kerch Strait water area was carried out using data from a portable three-channel hyperspectrometer EMMA (Ecological Monitoring of Marine Areas), operating from board a moving vessel during daylight hours with a resolution of several meters along the route. Based on the measured spectra of the sea spectral radiance coefficient, the spectra of the light absorption index by water in the Kerch Strait were calculated. Verification of these data was carried out at the stations by measurements of Secchi disk visibility depth. The concentrations of the three main natural components averaged over the depth of light penetration into the water column were calculated from the spectra of total light absorption by water. They were compared with measurements in surface water samples taken along the route. The discrepancy in these estimates in some areas indicates a nonuniform depth distribution of the components, which was confirmed by vertical sounding at the stations; these areas are not used for calibration of remote sensing results. The EMMA data showed the distribution of the natural components in the water area of the Kerch Strait averaged over the depth of light penetration. It also made it possible to estimate some characteristics of the anthropogenic impact recorded by satellites.
optical passive remote sensing, hyperspectrometer, suspended matter, phytoplankton, colored organic matter, Secchi disk, water temperature and salinity profiles, anthropogenic impact
1. Rostovtseva V., Goncharenko I., Konovalov B. Marine coastal zones monitoring by shipborne semiautomatic passive optical complex // Int. J. Remote Sens. 2018. P. 1–13. DOI: 10.1080/01431161.2018.1526427.
2. Alikas K., Ansko I., Vabson V., Ansper A., Kangro K., Uudeberg K., Ligi M. Consistency of radiometric satellite data over lakes and coastal waters with local field measurements // Remote Sens. 2020. V. 12. P. 616–634. DOI: 10.3390/rs12040616.
3. Jiang G., Loiselle S.A., Yang D., Ma R., Su W., Gao Ch. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations // Remote Sens. Environ. 2020. V. 241, N 4. DOI: 10.1016/j.rse.2020.111735111735.
4. Sözer A., Özsoy E. Water Exchange through Canal İstanbul and Bosphorus Strait // Mediter. Mar. Sci. 2017. V. 18. P. 77–86.
5. Constantin S., Doxaran D., Constantinescu S. Estimation of water turbidity and analysis of its spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data // Cont. Shelf Res. 2016. V. 112. P. 14–30.
6. Chepyzhenko A.A., Chepyzhenko A.I., Kushnir V.M. Struktura vod Kerchenskogo proliva po dannym kontaktnyh izmerenij i kosmicheskih s"emok // Okeanologiya. 2015. V. 55, N 1. P. 56–56.
7. Kubryakov A.A., Aleskerova A.A., Goryachkin Yu.N., Stanichny S.V., Latushkin A.A., Fedirko A.V. Propagation of the Azov Sea waters in the Black sea under impact of variable winds, geostrophic currents and exchange in the Kerch Strait // Progr. Oceanogr. 2019. V. 176. P. 1–24. 102119. DOI: 10.1016/j.pocean.2019.05.011.
8. Zavialov I., Osadchiev A., Sedakov R., Barnier B., Molines J.M., Belokopytov V. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait // Ocean Sci. 2020. V. 16, N 1. P. 15–30.
9. Zav'yalov I.B., Osadchiev A.A., Zav'yalov P.O., Kremenetskij V.V., Goncharenko I.V. Issledovanie vodoobmena v Kerchenskom prolive po istoricheskim dannym i dannym kontaktnykh izmerenij 2019 year // Okeanologiya. 2021. V. 61, N 3. P. 377–386.
10. Lomakin P.D., Chepyzhenko A.I., Chepyzhenko AA. Pole kontsentratsii rastvorennogo organicheskogo veshchestva v Azovskom more i Kerchenskom prolive na baze opticheskikh nablyudenij // Morskoj gidrofiz. zhurn. 2016. N 5. P. 76–88.
11. Mityagina M.I., Lavrova O.Yu., Bocharova T.Yu. Sputnikovyj monitoring neftyanykh zagryaznenij morskoj poverkhnosti // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2015. V. 12, N 5. P. 130–149.
12. Nemirovskaya I.A., Onegina V.D., Konovalov B.V., Lisitsyn A.P. Proiskhozhdenie uglevodorodov vo vzvesi i donnykh osadkakh v rajone Krymskogo poluostrova // Dokl. RAN. 2019. V. 484, N 5. P. 600–604.
13. Zav'yalov P.O., Zav'yalov I.B., Izhitskij A.S., Izhitskaya E.S., Konovalov B.V., Kremenetskij V.V., Nemirovskaya I.A., Chasovnikov V.K. Otsenka zagryazneniya Kerchenskogo proliva i prilegayushchej akvatorii Chernogo morya po dannym naturnykh izmerenij 2019–2020 years // Okeanologiya. 2022. V. 62, N 2. P. 194–203.
14. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water. Integrating cavity measurements // Appl. Opt. 1997. V. 36. P. 8710–8723.
15. Rostovtseva V.V. Metod polucheniya spektrov pogloshcheniya morskoj vody po dannym passivnogo distantsionnogo zondirovaniya s borta sudna s ispol'zovaniem svojstv chistoj vody // Optika atmosf. i okeana. 2015. V. 28, N 11. P. 1003–1011; Rostovtseva V.V. Method for sea water absorption spectra estimation on the basis of shipboard passive remote sensing data and pure sea water properties // Atmos. Ocean. Opt. 2016. V. 29, N 2. P. 162–170.
16. Goncharenko I.V., Rostovtseva V.V. Passivnoe opticheskoe zondirovanie rechnykh plyumov s borta sudna s pomoshch'yu girostabilizirovannogo kompleksa EMMA // Fundament. i priklad. gidrofiz. 2020. V. 13, N 2. P. 96–102. DOI: 10.7868/S2073667320020124.
17. Konovalov B.V., Kravchishina M.D., Belyaev N.A., Novigatskij A.N. Opredelenie kontsentratsii mineral'noj vzvesi i vzveshennogo organicheskogo veshchestva po ikh spektral'nomu pogloshcheniyu // Okeanologiya. 2014. V. 54, N 4. P. 1–9.