Vol. 36, issue 11, article # 3

Veretennikov V. V., Uzhegov V. N., Shmargunov V. P. Dynamics of microphysical parameters of the pyrolysis smoke based on the results of inversion of aerosol scattering and extinction coefficients in the Big Aerosol Chamber of IAO SB RAS. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 883–894. DOI: 10.15372/AOO20231103 [in Russian].
Copy the reference to clipboard
Abstract:

Measurements of polarization scattering phase functions and spectral extinction coefficients were carried out in smoke aerosols formed as a result of thermal decomposition of pine wood in the mode of low-temperature pyrolysis in the Big Aerosol Chamber (BAC) of IAO SB RAS. Using the developed algorithm for inverting optical measurements, the microstructure and complex refractive index of pyrolysis smoke are retrieved. The volume concentration and the mean radius of particles are analyzed microstructure parameters, with division into fine and coarse fractions. The temporal variability of the microphysical parameters of smoke aerosol is studied for 65 hours. It has been established that the real part of the refractive index is in the vicinity of n = 1.55, and the imaginary part is in the range 0.007 < k < 0.009. The mean radius of fine particles varies in the narrow range 0.137–0.146 mm. During smoke aging, the mean particle radius of the total ensemble monotonically increased from 0.19 to 0.6 mm, mainly due to a relative increase in the content of coarse aerosol. Results of this work are important for estimation of the radiative forcing of aerosol, improvement of climate models and algorithms of remote optical sounding.

Keywords:

pyrolysis smoke, polarization spectronephelometry, extinction coefficient, inverse problem, microphysical parameters, complex index of refraction

Figures:
References:

1. Kondrat'ev K.Ya., Grigor'ev Al.A. Lesnye pozhary kak komponent prirodnoi ekodinamiki // Optika atmosf. i okeana. 2004. V. 17, N 4. P. 279–292.
2. Karta pozharov. URL: https//fires.ru (data obrashcheniya: 25.09.23).
3. National Interagency Fire Center (NIFC), Fire Information – Wildland Fire Statistics (2022). URL: https: // www.nifc.gov / fire-information / statistics / wildfires (last access: 25.09.23).
4. Zhang Y.-H., Wooster M.J., Tutubalina O., Perry G.L.W. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT // Remote Sens. Environ. 2003. V. 87, N 1. P. 1–15. DOI: 10.1016/S0034-4257(03)00141-X.
5. Witte J.C., Douglass A.R., da Silva A., Torres O., Levy R., Duncan B.N. NASA A-Train and Terra observations of the 2010 Russian wildfires // Atmos. Chem. Phys. 2011. V. 11. P. 9287–9301. DOI: 10.5194/acp-11-9287-2011.
6. Antoxin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Voronetskaya N.G., Golovko A.K., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov A.S., Malyshkin S.B., Pevneva G.S., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Organicheskii aerozol' v atmosfere Sibiri i Arktiki. Pt. 3. Produkty lesnyx pozharov // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 740–749. DOI: 10.15372/AOO20170903.
7. Shi Y.R., Levy R.C., Eck T.F., Fisher B., Mattoo S., Remer L.A., Slutsker I., Zhang J. Characterizing the 2015 Indonesia fire event using modified MODIS aerosol retrievals // Atmos. Chem. Phys. 2019. V. 19. P. 259–274. DOI: 10.5194/acp-19-259-2019.
8. Andreae M.O. Emission of trace gases and aerosols from biomass burning – an updated assessment // Atmos. Chem. Phys. 2019. V. 19. P. 8523–8546. DOI: 10.5194/acp-19-8523-2019.
9. Fuzzi S., Baltensperger U., Carslaw K., Decesari S., Denier van der Gon H., Facchini M.C., Fowler D., Koren I., Langford B., Lohmann U., Nemitz E., Pandis S., Riipinen I., Rudich Y., Schaap M., Slowik J.G., Spracklen D., Vignati E., Wild M., Williams M., Gilardoni S. Particulate matter, air quality and climate: Lessons learned and future needs // Atmos. Chem. Phys. 2015. V. 15. P. 8217–8299. DOI: 10.5194/acp-15-8217-2015.
10. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S.K., Sherwood S., Stevens B., Zhang X.Y. Clouds and aerosols // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge: Cambridge University Press, 2014. P. 571–657. DOI: 10.1017/CBO9781107415324.
11. Zhang J., Reid J.S., Christensen M., Benedetti A. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the midwestern United States: Observational-based analysis of surface temperature // Atmos. Chem. Phys. 2016. V. 16. P. 6475–6494. DOI: 10.5194/acp-16-6475-2016.
12. Reid J.S., Koppmann R., Eck T.F., Eleuterio D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5. P. 799–825. DOI: 10.5194/acp-5-799-2005.
13. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kaercher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118. P. 5380–5552. DOI: 10.1002/jgrd.50171.
14. Zanatta M., Gysel M., Bukowiecki N., Müller T., Weingartner E., Areskoug H., Fiebig M., Yttri K.E., Mihalopoulos N., Kouvarakis G., Beddows D., Harrison R.M., Cavalli F., Putaud J.P., Spindler G., Wiedensohler A., Alastuey A., Pandolfi M., Sellegri K., Swietlicki E., Jaffrezo J.L., Baltensperger U., Laj P. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe // Atmos. Environ. 2016. V. 145. P. 346–364. DOI: 10.1016/j.atmosenv.2016.09.035.
15. Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: A significant atmospheric absorber of solar radiation? // Atmos. Chem. Phys. 2013. V. 13. P. 8607–8621. DOI: 10.5194/acp-13-8607-2013.
16. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: An investigative review // Aerosol Sci. Technol. 2006. V. 40. P. 27–67. DOI: 10.1080/02786820500421521.
17. Andreae M.O., Rosenfeld D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols // Earth-Science Rev. 2008. V. 89, N 1–2. P. 13–41. DOI: 10.1016/j.earscirev.2008.03.001.
18. WHO: Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, 2006. URL: https://www.euro.who.int/_data/assets/pdf_file/0005/78638/E90038.pdf.
19. WHO: Health effects of particulate matter. Policy implications for countries in Eastern Europe, Caucasus and central Asia. World Health Organization, 2013. URL: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/.
20. Reid J.S., Eck T.F., Christopher S.A., Koppmann R., Dubovik O., Eleuterio D.P., Holben B.N., Reid E.A., Zhang J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5. P. 827–849. DOI: 10.5194/acp-5-827-2005.
21. Chubarova N., Nezval' Ye., Sviridenkov I., Smirnov A., Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010 // Atmos. Meas. Tech. 2012. V. 5. P. 557–568. DOI: 10.5194/amt-5-557-2012.
22. Gorchakova I.A., Moxov I.I. Radiatsionnyi i temperaturnyi effekty dymovogo aerozolya v Moskovskom regione v period letnix pozharov 2010 year // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 5. P. 496–503.
23. Sklyadneva T.K., Belan B.D., Arshinov M.Yu. Radiatsionnyi rezhim g. Tomska v usloviyakh dymnoi mgly // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 215–222.
24. Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol'kin V.V., Terpugova S.A., Chernov D.G. Model'nye otsenki dinamiki vertikal'noi struktury pogloshcheniya solnechnogo izlucheniya i temperaturnykh effektov v fonovyx usloviyax i ekstremal'no zadymlennoi atmosfere po dannym samoletnyx nablyudenii // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 834–839; Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol’kin V.V., Terpugova S.A., Chernov D.G. Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in extremely smoke-laden atmosphere according to data of aircraft observations // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 25–30. DOI: 10.1134/S1024856018010153.
25. Panchenko M.V., Zhuravleva T.B., Kozlov V.S., Nasrtdinov I.M., Pol'kin V.V., Terpugova S.A., Chernov D.G. Otsenka radiatsionnyx effektov aerozolya v fonovyx i zadymlennyx usloviyax atmosfery Sibiri na osnove empiricheskix dannyx // Meteorol. i gidrol. 2016. N 2. P. 45–54.
26. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10. P. 179–198. URL: http://dx.doi.org/10.5194/amt-10-179-2017.
27. Zhuravleva T.B., Nastrdinov I.M., Konovalov I.B., Golovushkin N.A., Beekmann M. Impact of the atmospheric photochemical evolution of the organic component of biomass burning aerosol on its radiative forcing efficiency: A box model analysis // Atmosphere. 2021. V. 12, N 12. P. 1555. DOI: 10.3390/atmos12121555.
28. Chand D., Schmid O., Gwaze P., Parmar R.S., Helas G., Zeromskiene K., Wiedensohler A., Massling A., Andreae M.O. Laboratory measurements of smoke optical properties from the burning of Indonesian peat and other types of biomass // Geophys. Res. Lett. 2005. V. 32. P. L12819. DOI: 10.1029/2005GL022678.
29. Andreae M.O., Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols // Atmos. Chem. Phys. 2006. V. 6. P. 3131–3148. DOI: 10.5194/acp-6-3131-2006.
30. Chen Y., Bond T.C. Light absorption by organic carbon from wood combustion // Atmos. Chem. Phys. 2010. V. 10, N 4. P. 1773–1787. DOI: 10.5194/acp-10-1773-2010.
31. Chakrabarty R.K., Moosmüller H., Chen L.-W.A., Lewis K., Arnott W.P., Mazzoleni C., Dubey M.K., Wold C.E., Hao W.M., Kreidenweis S.M. Brown carbon in tar balls from smoldering biomass combustion // Atmos. Chem. Phys. 2010. V. 10, N 13. P. 6363–6370. DOI: 10.5194/acp-10-6363-2010.
32. Chakrabarty R.K., Gyawali M., Yatavelli R.L.N., Pandey A., Watts A.C., Knue J., Chen L.-W.A., Pattison R.R., Tsibart A., Samburova V., Moosmüller H. Brown carbon aerosols from burning of boreal peatlands: Microphysical properties, emission factors, and implications for direct radiative forcing // Atmos. Chem. Phys. 2016. V. 16, N 5. P. 3033–3040. DOI: 10.5194/acp-16-3033-2016.
33. Sumlin B.J., Heinson Yu.W., Shetty N., Pandey A., Pattison R.S., Baker S., Hao W.M., Chakrabarty R.K. UV–Vis–IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 206. P. 392–398. DOI: 10.1016/j.jqsrt.2017.12.009.
34. Sumlin B.J., Pandey A., Walker M.J., Pattison R.S., Williams B.J., Chakrabarty R.K. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning // Environ. Sci. Tech. Lett. 2017. V. 4, N 12. P. 540–545.
35. Rakhimov R.F., Makienko E.V., Panchenko M.V., Kozlov V.S., Shmargunov V.P. Izmenenie mikrostruktury drevesnyx dymov v malogabaritnoi aerozol'noi kamere pod vozdeistviem razlichnyx faktorov // Optika atmosf. i okeana. 2003. V. 16, N 4. P. 337–346.
36. Rakhimov R.F., Kozlov V.S., Makienko E.V. Nekotorye osobennosti formirovaniya dispersnoi struktury dymovyx aerozolei pri termicheskom razlozhenii xvoinoi drevesiny. 1. Variatsii massy szhigaemyx obraztsov // Optika atmosf. i okeana. 2008. V. 21, N 3. P. 218–222.
37. Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Izmenchivost' kondensatsionnyx svoistv smeshannogo dyma goreniya biomassy na razlichnyx stadiyax ego evolyutsii // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 846–855; Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Variations in condensation properties of mixed smoke from biomass burning at different smoke evolution stages // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 9–18. DOI: 10.1134/S1024856018010086.
38. Rakhimov R.F., Makienko E.V. Nekotorye metodicheskie dopolneniya k resheniyu obratnoi zadachi dlya vosstanovleniya parametrov dispersnoi struktury dymov smeshannogo sostava // Optika atmosf. i okeana. 2010. V. 23, N 3. P. 183–189; Rakhimov R.F., Makienko E.V. Some methodic additions to the solution of the inverse problem for the reconstruction of the parameters of the disperse structure of mixed smokes // Atmos. Ocean. Opt. 2010. V. 23, N 4. P. 259–265.
39. Uzhegov V.N., Rostov A.P., Pkhalagov Yu.A. Avtomatizirovannyi trassovyi fotometr // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 590–594.
40. Kozlov V.S., Konovalov I.B., Uzhegov V.N., Chernov D.G., Pol’kin Vas.V., Zenkova P.N., Yausheva E.P., Shmargunov V.P., Dubtsov S.N. Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the big aerosol chamber at the stages of smoke generation and ageing // Proc. SPIE. 2020. V. 11560. P. 1156046. DOI: 10.1117/12.2575499.
41. Shchelkanov N.N. Metody vychisleniya sluchainyx pogreshnostei parametrov okruzhayushchei sredy iz eksperimental'nyh dannyh // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 815–821.
42. Veretennikov V.V. Sovmestnoe opredelenie mikrostruktury i pokazatelya prelomleniya aerozolya po dannym solnechnoi fotometrii // Optika atmosf. i okeana. 2007. V. 20, N 3. P. 214–221; Veretennikov V.V. Simultaneous determination of aerosol microstructure and refractive index from sun photometry data // Atmos. Ocean. Opt. 2007. V. 20, N 3. P. 192–199.
43. Veretennikov V.V., Men’shchikova S.S., Uzhegov V.N. Izmenchivost' parametrov mikrostruktury prizemnogo aerozolya v letnii sezon po rezul'tatam obrashcheniya izmerenii spektral'nogo oslableniya sveta na gorizontal'noi trasse v Tomske. Part I. Geometricheskoe sechenie submikronnyh i grubodispersnyh chastits // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 857–866; Veretennikov V.V., Men’shchikova S.S., Uzhegov V.N. Variability in parameters of the near-surface aerosol microstructure in summer according to results of inversion of measurements of spectral extinction of light on a horizontal path in Tomsk: Part I – Geometrical cross section of fine and coarse particles // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 128–137. DOI: 10.1134/S1024856019020155.
44. Deirmendzhan D. Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymi chastitsami. M.: Mir, 1971. 165 p.
45. Fuks N.A. Mexanika aerozolei. M.: Izd-vo AN SSSR, 1955. 351 p.
46. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. Hoboken, New Jersey: John Wiley & Sons Inc., 2016. 1149 p.