The results of synchronous lidar observations of the transfer of atmospheric aerosol fields over Lake Baikal during the summer expedition of 2018 are presented. The experiment was carried out using two lidars, one of which was located on a ship, and the second, at a distance of 732 m at a stationary station. Based on the correlation analysis of the lidar data, the transfer time of atmospheric aerosol heterogeneities between observation points at different altitudes above the mountain basin is estimated. It is found that the transfer time is 5 min 20 s for the altitude range 100–350 m, 7 min 12 s for 1250–1500 m, 5 min 20 s for 2100–2500 m, and 6 min 24 s for the range 4200–4300 m. Such uneven altitude distribution of the transfer time of aerosol objects is due to the complex air flow circulation in the mountain basin.
Lake Baikal, aerosol, lidar, cross-correlation function, meteorological parameters
1. Zuyev V.Ye., Antonovich V.V., Belan B.D., Zhbanov E.F., Mikushev M.K., Panchenko M.V., Podanev A.V., Tolmachev G.N., Shcherbatova A.V. Fenomen krugovoy tsirkulyatsii vozdukha v kotlovine ozera Baykal // Dokl. RAN. 1992. V. 325, N 6. P. 1146–1150.
2. Arshinov M.Yu., Belan B.D., Ivlev G.A., Poda¬nev A.V., Pokrovskii Ye.V., Rasskazchikova T.M., Sklyadneva T.K. Nekotoryye kharakteristiki tsirkulya¬tsii vozdukha vdol' perimetra oz. Baykal // Meteorol. i gidrol. 1999. N 8. P. 66–71.
3. Arshinov M.Yu., Belan B.D., Ivlev G.A., Rasskaz¬chikova T.M. Prostranstvenno-vremennyye kharakteristiki tsirkulyatsii vozdukha v kotlovine oz. Baykal // Optika atmosf. i okeana. 2001. V. 14, N 4. P. 290–293.
4. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
5. Smalikho I.N., Banakh V.A., Sukharev A.A. Opredele¬niye parametrov turbulentnosti iz spektrov vertikal'¬noy komponenty skorosti vetra, izmeryayemoy impul's¬nym kogerentnym doplerovskim lidarom. Chast' III. Eksperiment na poberezh'ye ozera Baykal // Optika atmosf. i okeana. 2021. V. 34, N 11. P. 891–897. DOI: 10.15372/AOO20211109.
6. Berkin N.S., Makarov A.A., Rusinek O.T. Baykalovedeniye: uch. posobiye. Irkutsk: Izd-vo Irk. gos. un-ta, 2009. 291 p.
7. Balin Yu.S., Yershov A.D. Lidarnyye issledovaniya vertikal'noy struktury aerozol'nykh poley atmo¬sfery v kotlovine oz. Baykal // Optika atmosf. i okeana. 2000. V. 13, N 6–7. P. 633–638.
8. Balin Yu.S., Yershov A.D., Penner I.E. Lidarnyye korabel'nyye issledovaniya aerozol'nykh poley v atmosfere oz. Baykal. Chast' 1. Prodol'nyye razrezy // Optika atmosf. i okeana. 2003. V. 16, N 5–6. P. 438–446.
9. Balin Yu.S., Yershov A.D., Penner I.E. Lidarnyye korabel'nyye issledovaniya aerozol'nykh poley v atmo¬sfere oz. Baykal. Chast' 2. Poperechnyye razrezy // Optika atmosf. i okeana. 2003. V. 16, N 7. P. 587–597.
10. Balin Yu.S., Bairashin G.S., Kokhanenko G.P., Penner I.E., Samoilova S.V. LOSA-M2 aerosol Raman lidar // Quantum Electron. 2011. V. 41, N 10. P. 945. DOI: 10.1070/QE2011v041n10ABEH014574.
11. Nasonov S., Balin Yu., Klemasheva M., Kokhanenko G., Novoselov M., Penner I., Samoilova S., Khodzher T. Mobile aerosol Raman polarizing lidar LOSA-A2 for atmospheric sounding // Atmosphere. 2020. V. 11, N 1032. P. 1–12. DOI: 10.3390/atmos11101032.
12. Hamamatsu Photonics. URL: https://www.hamamatsu.com / eu / en / product / optical-sensors / pmt / pmt-module/current-output-type/H11526-20.html.
13. Slesar’ A.S., Chaikovskii A.P., Ivanov A.P., Deni¬sov S.V., Korol' M.M., Osipenko F.P., Balin Yu.S., Kokhanenko G.P., Penner I.E. Fotopriyemnyye moduli dlya lidarnykh stantsiy v seti CIS-LiNet // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1073–1081.
14. URL: https://www.hamamatsu.com/eu/en/product/optical-sensors / pmt / pmt-module / current-output-type /H11706P-40.html (last access: 15.03.2023).
15. The Arctic and Antarctic Research Institute. URL: http://old.aari.ru/odata/d0010.php (last access: 30.03.2023).
16. Ventusky. URL: https://www.ventusky.com/ (last access: 30.03.2023).
17. Draxler R.R., Rolph G.D. HYSPLIT (HYbridSingle-Particle Lagrangian Integrated Trajectory) model. URL: http://www.arl.noaa.gov/ready/hysplit4.html (last access: 15.03.2023).
18. Universitet of Wyoming. URL: http://www.weather. uwyo.edu/sounding (last access: 30.03.2023).
19. Stationary meteorological complexes SAP. URL: http://meteosap.ru/catalog/amk-03/ (last access: 20.03.2023).
20. Popovicheva O., Molozhnikova E., Nasonov S., Potem- kin V., Penner I., Klemasheva M., Marinaite I., Golobokova L., Vratolis S., Eleftheriadis K., Khodzer T. Industrial and wildfire aerosol pollution over world heritage Lake Baikal // J. Environ. Sci. 2021. V. 107. P. 49–64. DOI: 10.1016/j.jes.2021.01.011.
21. Matviyenko G.G., Zadde G.O., Ferdinandov E.S., Kolev I.N., Avramova R.P. Korrelyatsionnyye metody lazerno-lokatsionnykh izmereniy skorosti vetra. Novosibirsk: Nauka, 1985. 223 p.
22. Boks Dzh., Dzhenkins G. Analiz vremennykh ryadov, prognoz i upravleniye / pod red. V.F. Pisarenko. M.: Mir, 1974. 4063 p.
23. Balin Yu.S., Belen'kiy M.S., Razenkov I.A., Safonova N.V. Prostranstvenno-vremennaya struktura signalov aerozol'nogo lidara // Optika atmosf. i okeana. 1988. V. 1, N 8. P. 77–83.
24. Burman E.A. Mestnyye vetry. L.: Gidrometeoizdat, 1969. 324 p.