A mathematical model is proposed that simulates the acquisition and processing of hyperspectral remote sensing data on subtle fragments of environmental pollution (garbage) comparable in size with the spatial resolution of the observation equipment. Spectral mixing of “objects” with “background” is provided by a special coefficient, which takes into account that the area of each element of a scene template related to the “object” is only partially filled with its spectral characteristic, and the rest of the area, with the background characteristic. The options for calculating the probability of detecting objects depending on the observation conditions specified with the MODTRAN atmospheric model are considered. The difference between the model data and real experimental results is no more than 10%.
hyperspectral imaging, remote sensing, simulation, environmental pollution
1. Ostrikov V.N., Plakhotnikov O.V., Kiriyenko A.V. Primeneniye aviatsionnoy videospektral'noy syemki dlya poiska na mestnosti fragmentov otdelyayushchikhsya chastey raket-nositeley // Issledovaniye Zemli iz kosmosa. 2019. N 2. P. 45–54.
2. Styepochkin I.Ye., Salyuk P.A., Kachur V.A. Obnaruzheniye razliva nefteproduktov v vide emul'siy i otdel'nykh plenok na poverkhnosti Beringova morya s pomoshch'yu giperspektral'noy opticheskoy radiometrii v avguste 2013 g. // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 61–67.
3. Burlov V.G., Kiriyenko A.V., Ostrikov V.N., Plakhotnikov O.V. Otsenka kachestva postroyeniya geoinformatsionnoy sistemy avtomatizirovannogo poiska tekhnogennogo musora po videodannym vozdushnoy syemki // Gidrometeorologiya i ekologiya. 2021. N 63. P 311–328.
4. Belov V.V., Tarasenkov M.V. Tri algoritma statisticheskogo modelirovaniya v zadachakh opticheskoy svyazi na rasseyannom izluchenii i bistaticheskogo zondirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 397–403.
5. Balter B.M., Balter D.B., Egorov V.V., Kali¬nin A.P., Kottsov V.A., Orlov A.G., Rodionov I.D., Stal'naya M.V. Metodika imitatsionnogo modeli¬rovaniya giperspektral'nykh izobrazheniy zemnoy poverkhnosti // Issledovaniye Zemli iz kosmosa. 2007. N 5. P. 21–29.
6. Ostrikov V.N., Plakhotnikov O.V., Shulika K.M. Imitatsionnaya model' preobrazovaniya snimkov aviatsionnogo spektrometra na usloviya nablyudeniya iz kosmosa // Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012. V. 9, N 2. P. 167–172.
7. Börner A., Wiest L., Reulke R., Richter R. SENSOR: A tool for the simulation of hyperspectral remote sensing systems // Proc. of Remote Sensing and Hotogrammetry Society Conference 2008 “Measuring change in change in the Earth system”, University of Exeter, 15–17 September 2008. 21 p.
8. Chapurskii L.I. Otrazhatel'nyye svoystva prirodnykh obyektov v diapazone 400–2500 nm. M.: MO SSSR, 1986. Part 1. 205 pp.
9. SR-3500 Series Spectroradiometer /SM-3500 Series Spectrometer Operator’s Manual. Spectral Evolution, Inc., MA, USA, 2014. 13 p.
10. Shovengerdt R.A. Distantsionnoye zondirovaniye. Modeli i metody obrabotki izobrazheniy. M.: Tekhnosfera, 2010. 560 p.
11. Ostrikov V.N., Plakhotnikov O.V. Kalibrovka giperspektral'nykh dannykh aviatsionnoy syemki po soputstvuyushchim nazemnym izmereniyam etalonnykh poverkhnostey nablyudayemykh stsen // Issledovaniye Zemli iz kosmosa. 2013. N 6. P. 38–42.
12. Berk A., Anderson G.P., Acharya P.K., Shettle E.P. MODTRAN 5.2.0.0 User’s Manual. Spectral Sciences, Inc., July 2008. 100 p.
13. Kruse F.A. Comparison of ATREM, ACORN, and FLAASH atmospheric correction using low altitude AVIRIS data of Boulder, Colorado // Proc. of the AVIRIS Earth Science and Applications Workshop, 31 March – 2 April, 2004. 10 p.
14. Molchanov A.S. Ikonicheskiye sistemy vozdushnoy razvedki. Osnovy postroyeniya, otsenka kachestva i ikh primeneniye v kompleksakh s BLA. Volgograd: Panorama, 2017. 214 p.
15. Ostrikov V.N., Plakhotnikov O.V. Vliyaniye predva¬ritel'noy obrabotki dannykh giperspektral'noy syemki na kachestvo ikh tematicheskogo analiza // Issledovaniye Zemli iz kosmosa. 2014. N 1. P. 1–6.