The results are presented of laboratory experiments to determine the characteristics of convective turbulence over a heated metal surface for various heights and temperatures by high-speed thermography. The study of convective turbulence characteristics was carried out using a high-speed infrared camera by shooting the temperature field of low-inertia paper targets suspended above the heated surface simultaneously over the entire vertical plane of the IR camera field of view. Based on fluctuations in the temperature field of the target surface, the heat transfer coefficient, the intensity level of the convective flow, the total flow, and the amount of heat generated during measurements at different heights above the surface are determined. The energy spectra of convective turbulence are plotted under various turbulent conditions. An analysis of the turbulence spectra showed the presence of an inertial interval with a slope close to the 8/3 power law for all considered heights above the heated surface, temperatures, and turbulence conditions. Characteristics of convective turbulence obtained can be used when testing various optical adaptive laser beam control systems, studying the propagation of vortex laser beams and combustion centers, which are also characterized by convective turbulence with a further transition to atmospheric turbulence induced by combustion energy.
turbulence, convection, temperature fluctuation, high-speed thermography, laboratory experiment, energy spectrum
1. Emaleev O.N., Lukin V.P., Pokasov V.V., Sazanovich V.M., Hmelevtsov S.S. Opticheskie izmereniya spektrov pul'satsii pokazatelya prelomleniya v model'noi konvektsii // Izv. vuzov. Fiz. 1976. N 9. P. 100–105.
2. Lukin V.P., Sazanovich V.M. Issledovanie turbulentnykh harakteristik v usloviyakh konvektsii // Izv. AN SSSR. Fiz. atmosf. i okeana. 1978. V. 14, N 11. P. 1212–1215.
3. Zhilkin B.P., Larionov I.D., Shchuba A.N. Primenenie teplovizora dlya opredeleniya temperaturnykh polei gazovykh potokov // Pribory i tekhnika eksperimenta. 2004. N 4. P. 136–137.
4. Yaryshev N.A. Teoreticheskie osnovy izmereniya nestatsionarnoi temperatury. L.: Energoatomizdat, Leningr. otd-nie, 1990. 256 p.
5. Konvektivnyi teploobmen v odnorodnoi srede (teplootdacha): ucheb. posobie / pod red. V.V. Sakhina. SPb.: Balt. gos. tekhn. un-t, 2013. 224 p.
6. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi. Izd. 2-e, stereot. M.: Energiya, 1977. 344 p.
7. Dul'nev G.N. Teoriya teplo- i massoobmena. SPb.: NIU ITMO, 2012. 195 p.
8. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoi atmosfere. L.: Gidrometeoizdat, 1976. 287 p.
9. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Formirovanie turbulentnosti v astronomicheskikh observatoriyakh yuga Sibiri i Severnogo Kavkaza // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 228–246; Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Formation of turbulence at astronomical observatories in Southern Siberia and North Caucasus // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 464–482.
10. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnykh dvizhenii vozdukha v shakhte glavnogo zerkala Sibirskoi lidarnoi stantsii IOA SO RAN. Eksperiment i chislennoe modelirovanie // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 905–910. DOI: 10.15372/AOO20161102.