Water vapour plays a key role in different climate-forming processes at various altitudes of the Earth's atmosphere. Water vapour isotopologues monitoring provides information on the atmospheric hydrological cycle. It helps to study the processes associated with evaporation and condensation that control the humidity in the troposphere and water exchange between the troposphere and stratosphere. For the first time, temporal variability of water vapor isotopologues (H2O and δD) in Peterhof in 2009–2020 were analyzed using ground-based measurements of solar IR radiation by the Bruker IFS 125HR Fourier spectrometer. For both H2O and δD, the maximum values occur in summer, the minimum – in winter, while the largest variability of H2O is observed in summer, and δD – in winter months due to the climatic features of St. Petersburg, i.e. the origin and history of incoming air masses. The database of water vapour isotopic composition in the vicinity of St. Petersburg can be used in models of the general circulation of the atmosphere to improve the accuracy of weather forecasting and long-term changes in the regional climate.
water vapor cycle, ground-based IR Fourier spectroscopy, isotopic composition of water vapor
1. Kämpfer N. Monitoring Atmospheric Water Vapour Ground-Based Remote Sensing and In-situ Methods. Series: ISSI Scientific Report Series, 10 (VIII). New York: Springer-Verlag, 2013. 283 p.
2. Stevens B., Bony S. What are climate models missing? // Science. 31 May 2013. V. 340. P. 1053–1054.
3. Toride K., Yoshimura K., Tada M., Diekmann Ch., Ertl B., Khosrawi F., Schneider M. Potential of mid-tropospheric water vapor isotopes to improve large-scale circulation and weather predictability // Geophys. Res. Lett. 2021. V. 48. e2020GL091698.
4. Schneider A., Borsdorff T., van de Brugh J., Aemisegger F., Feist D.G., Kivi R., Hase F., Schneider M., Landgraf J. First data set of H2O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI) // Atmos. Meas. Tech. 2020. V. 13. P. 85–100.
5. Ehhalt D.H. Vertical profiles of HTO, HDO, and H2O in the troposphere, NCAR technical note. NCAR-TN-STR-100. 1974. 138 p. DOI: 10.5065/D6BP00QB.
6. Webster C.R., Heymsfield A.J. Water isotope Ratios H/D, 18O/16O, 17O/16O in and out of Clouds Map Dehydration Pathways // Science. 2003. V. 302. P. 1742–1745.
7. Payne V.H., Noone D., Dudhia A., Piccolo C., Grainger R.G. Global satellite measurements of HDO and implications for understanding the transport of water vapour into the stratosphere // Q. J. Roy. Meteorol. Soc. 2007. V. 133. P. 1459–1471.
8. Lossow S., Steinwagner J., Urban J., Dupuy E., Boone C.D., Kellmann S., Linden A., Kiefer M., Grabowski U., Glatthor N., Höpfner M., Röckmann T., Murtagh D.P., Walker K.A., Bernath P.F., von Clarmann T., Stiller G.P. Comparison of HDO measurements from Envisat/MIPAS with observations by Odin/SMR and SCISAT/ACE-FTS // Atmos. Meas. Tech. 2011. V. 4. P. 1855–1874.
9. Worden J., Bowman K., Noone D, and TES team members. TES observations of the tropospheric HDO/H2O ratio: Retrieval approach and characterization // J. Geophys. Res. 2006. V. 11.
10. Frankenberg C., Yoshimura K., Warneke T., Aben I., Butz A., Deutscher N., Griffith D., Hase F., Notholt J., Schneider M., Schrijver H., Röckmann T. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground // Science. 11 September 2009. V. 325, N 5946. P. 1374–1377.
11. Boesch H., Deutscher N.M., Warneke T., Byckling K., Cogan A.J., Griffith D.W.T., Notholt J., Parker R.J., Wang Z. HDO/H2O ratio retrievals from GOSAT // Atmos. Meas. Tech. Discuss. 2012. V. 5. P. 6643–6677.
12. Zadvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Opredelenie otnositel'nogo soderzhaniya HDO v atmosfere po dannym odnovremennykh izmerenii sputnika GOSAT-2 v teplovom i blizhnem IK-diapazonakh // Optika atmosf. i okeana. 2022. V. 35, N 12. P. 999–1003; Zadvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Retrieval of HDO Relative Content in the atmosphere from simultaneous GOSAT-2 measurements in the thermal and near-IR // Atmos. Ocean. Opt. 2023. V. 36, N 2. P. 127–131.
13. Lacour J.-L., Clarisse L., Worden J., Schneider M., Barthlott S., Hase F., Risi C., Clerbaux C., Hurtmans D., Coheur P.-F. Cross-validation of IASI/MetOp derived tropospheric dD with TES and ground-based FTIR observations // Atmos. Meas. Tech. 2015. V. 8. P. 1447–1466.
14. Schneider M., Borger C., Wiegele A., Hase F., García O.E., Sepúlveda E., Werner M. MUSICA MetOp/IASI {H2O, dD} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models // Atmos. Meas. Tech. 2017. V. 10. P. 507–525.
15. Scheepmaker R.A., aan de Brugh J., Hu H., Borsdorff T., Frankenberg C., Risi C., Hasekamp O., Aben I., Landgraf J. HDO and H2O total column retrievals from TROPOMI shortwave infrared measurements // Atmos. Meas. Tech. 2016. V. 9. P. 3921–3937.
16. Schneider M., Wiegele A., Barthlott S., González Y., Christner E., Dyroff C., García O.E., Hase F., Blumenstock T., Sepúlveda E., Mengistu Tsidu G., Takele Kenea S., Rodríguez S., Andrey J. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H2O, dD} pairs – a review // Atmos. Meas. Tech. 2016. V. 9. P. 2845–2875.
17. Barthlott S., Schneider M., Hase F., Blumenstock T., Kiel M., Dubravica D., García O.E., Sepúlveda E., Mengistu Tsidu G., Takele Kenea S., Grutter M., Plaza-Medina E.F., Stremme W., Strong K., Weaver D., Palm M., Warneke T., Notholt J., Mahieu E., Servais C., Jones N., Griffith D.W.T., Smale D., Robinson J. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra // Earth Syst. Sci. Data. 2017. V. 9. P. 15–29.
18. Wiegele A., Schneider M., Hase F., Barthlott S., García O.E., Sepúlveda E., González Y., Blumenstock T., Raffalski U., Gisi M., Kohlhepp R. The MUSICA MetOp/IASI H2O and dD products: Characterisation and long-term comparison to NDACC/FTIR data // Atmos. Meas. Tech. 2014. V. 7. P. 2719–2732.
19. Gribanov K.G., Zakharov V.I., Beresnev S.A., Rokotyan N.V., Poddubny V.A., Imasu R., Chistyakov P.A., Skorik G.G., Vasin V.V. Zondirovanie HDO/H2O v atmosfere Urala metodom nazemnykh izmerenii IK-spektrov solnechnogo izlucheniya s vysokim spektral'nym razresheniem // Optika atmosf. i okeana. 2011. V. 24, N 2. P. 124–127; Gribanov K.G., Zakharov V.I., Beresnev S.A., Rokotyan N.V., Poddubny V.A., Imasu R., Chistyakov P.A., Skorik G.G., Vasin V.V. Sensing HDO/H2O in the Ural’s atmosphere using ground-based measurements of IR solar radiation with a high spectral resolution // Atmos. Ocean. Opt. 2011. V. 24, N 4. P. 369–372.
20. Gribanov K., Jouzel J., Bastrikov V., Bonne J.-L., Breon F.-M., Butzin M., Cattani O., Masson-Delmotte V., Rokotyan N., Werner M., Zakharov V. Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing) // Atmos. Chem. Phys. 2014. V. 14. P. 5943–5957.
21. Rokotyan N.V., Zakharov V.I., Gribanov K.G., Schneider M., Bréon F.-M., Jouzel J., Imasu R., Werner M., Butzin M., Petri C., Warneke T., Notholt J. A posteriori calculation of d18O and dD in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H216O, H218O, and HD16O // Atmos. Meas. Tech. 2014. V. 7. P. 2567–2580.
22. Virolainen Ya., Timofeyev Yu., Berezin I., Poberovsky A., Polyakov A., Zaitsev N., Imhasin H. Atmospheric integrated water vapour measured by IR and MW techniques at the Peterhof site (Saint Petersburg, Russia) // Int. J. Remote Sens. 2016. V. 37, N 16. P. 3771–3785.
23. Virolainen Y.A., Timofeyev Y.M., Kostsov V.S., Ionov D.V., Kalinnikov V.V., Makarova M.V., Poberovsky A.V., Zaitsev N.A., Imhasin H.H., Polyakov A.V., Schneider M., Hase F., Barthlott S., Blumenstock T. Quality assessment of integrated water vapour measurements at St. Petersburg site, Russia: FTIR vs. MW and GPS techniques // Atmos. Meas. Tech. 2017. V. 10. P. 4521–4536.
24. Galewsky J., Steen-Larsen H.C., Field R.D., Worden J., Risi C., Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle // Rev. Geophys. 2016. V. 54. P. 809–865.
25. Schneider M., Hase F., Blumenstock T. Ground-based remote sensing of HDO/H2O ratio profiles: Introduction and validation of an innovative retrieval approach // Atmos. Chem. Phys. 2006. V. 6. P. 4705–4722.
26. Hase F., Hanniganb J.W., Goldmanc A., Jonesd N.B., Rinslande C.P., Woodf S.W. Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 87, N 1. P. 25–52.
27. Baza dannykh profilei temperatury i geopotentsial'nykh vysot NCEP [Elektronnyi resurs]. URL: https: // www-air.larc.nasa.gov/missions/ndacc/data.html?NCEP=ncep-list (last access: 28.03.2023).
28. Whole Atmosphere Community Climate Model (WACCM) Model Output ds313.6 [Elektronnyi resurs]. URL: https: //rda.ucar.edu/datasets/ds313.6/#!description (last access: 28.03.2023).
29. Virolainen Ya.A. Metodicheskie aspekty opredeleniya soderzhaniya uglekislogo gaza v atmosfere s pomoshch'yu IK-Fur'e-spektrometrii // ZHurn. prikladnoi spektroskopii. 2014. V. 85, N 3. P. 453–460.
30. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Griffith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8. P. 1555–1573.
31. Schneider M., Barthlott S., Hase F., González Y., Yoshimura K., García O.E., Sepúlveda E., Gomez-Pelaez A., Gisi M., Kohlhepp R., Dohe S., Blumenstock T., Wiegele A., Christner E., Strong K., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Demoulin P., Jones N., Griffith D.W.T., Smale D., Robinson J. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA // Atmos. Meas. Tech. 2012. V. 5. P. 3007–3027.