Using numerical finite-difference time-domain (FDTD) calculations, we simulate and examine the absorption dynamics of the near-infrared optical radiation in a spherical microcapsule surrounded by solid nanoparticles of different optical properties (metal, biocompatible dielectric). A model microcapsule resembles a microcontainer used in modern bio- and medical technologies for targeted delivery of therapeutic nanodoses of drugs to the desired region of the biological tissues. We show that due to light scattering on nanoparticles, the optical field superlocalization in the "hot regions" on the microcapsule surface take place. The three-fold light absorption enhancement can be achieved due to the addition of buffer nanoparticles.
microcapsule, absorbing nanoparticle, FDTD-calculations
1. Donath E., Sukhorukov G.B., Caruso F., Davis S.A., Mohwald H. Nowel hollow polymer shells by colloid-templated assemble of polyelectrolytes // Angew. Chem., Int. Ed. 1998. V. 37, N 16. P. 2201–2205.
2. Timin A.S., Gould D.J., Sukhorukov G.B. Multi-layer microcapsules: Fresh insights and new application // Expert Opin. Drug Delivery. 2017. V. 14, N 5. P. 583–587.
3. Koryakina I., Kuznetsova D.S., Zuev D.A., Milichko V.A., Timin A.S., Zyuzin M.V. Optically responsive delivery platforms: From the design considerations to biomedical applications // Nanophotonics. 2020. V. 9, N 1. P. 39–74.
4. Ungaro F., d’Angelo I., Miro A., La Rotonda M.I., Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises // J. Pharm. Pharmacol. 2012. V. 64, N 9. P. 1217–1235.
5. Timin A.S., Gao H., Voronin D.V., Gorin D.A., Sukhorukov G.B. Inorganic/organic multilayer capsule composition for improved functionality and external trig-gering // Adv. Mater. Interfaces. 2014. V. 4. P. 1600338.
6. Mordovina E.A., Sindeeva O.A., Abramova A.M., Tsyupka D.V., Atkin V.S., Bratashov D.N., Goryacheva I.Yu., Sukhorukov G.B. Controlled release of a-amylase from microchamber arrays containing carbon nanoparticle aggregates // Mendeleev Commun. 2021. V. 31, N 6. P. 869–871.
7. Wu Y., Zhou L., Du X., Yang Y. Optical and thermal radiative properties of plasmonic nanofluids containing core-shell composite nanoparticles for efficient photothermal conversion // Int. J. Heat Mass Transfer. 2015. V. 82. P. 545–554.
8. Duan H., Tang L., Zheng Y. Optical properties of hybrid plasmonic nanofluid based on core/shell nanoparticles // Phys. E. 2017. V. 91. P. 88–92.
9. Tabrizi A.A., Pahlavan A. Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer // Opt. Commun. 2020. V. 454. 124437.
10. Zhu J., Jin G. Performance enhancement of solar cells based on high photoelectric conversion efficiency of h-BN and metal nanoparticles // Opt. Express. 2022. V. 30. P. 13469–13480.
11. Shokeen P., Jain A., Kapoor A. Silicon nanospheres for directional scattering in thin-film solar cells // Nanophotonics. 2016. V. 10, N 3. P. 036013.
12. Guo J., Wu Y., Gong Z., Chen X., Cao F., Kala S., Qiu Z., Zhao X., Chen J., He D., Chen T., Zeng R., Zhu J., Wong K.F., Murugappan S., Zhu T., Xian Q., Hou X., Ruan Y.C., Li B., Li Y.C., Zhang Y., Sun L. Photonic nanojet-mediated optogenetics // Adv. Sci. 2022. V. 9, N 12. P. 2104140.
13. Geints Y.E., Panina E.K., Zemlyanov A.A. Shape-mediated light absorption by spherical microcapsule with gold-nanoparticles-dope // J. Quantum. Spectrosc. Radiat. Transfer. 2019. V. 236. P. 106595.
14. Bibikova O., Singh P., Popov A., Akchurin G., Skaptsov A., Skovorodkin I., Khanadeev V., Mikhalevich D., Kinnunen M., Bogatyrev V., Khlebtsov N., Vainio S.J., Meglinski I., Tuchin V. Shape-dependent interaction of gold nanoparticles with cultured cells at laser exposure // Laser Phys. Lett. 2017. V. 14, N 14. P. 055901.
15. Nehl C.L., Hafner J.H. Shape-dependent plasmon resonances of gold nanoparticles // J. Mater. Chem. 2008. V. 18. P. 2415–2419.