Vol. 36, issue 05, article # 2

Serdyukov V. I., Sinitsa L. N., Mikhailenko S. N. Absorption spectrum of H217O between 7900 and 9500 cm-1. // Optika Atmosfery i Okeana. 2023. V. 36. No. 05. P. 346–355. DOI: 10.15372/AOO20230502 [in Russian].
Copy the reference to clipboard
Abstract:

Absorption spectrum of water vapor highly enriched with 17O (more than 80%) was recorded using a Bruker IFS 125M Fourier spectrometer in the 7900–9500 cm-1 range at room temperature. The spectrum was recorded at a pressure of about 24 mbar with a spectral resolution of 0.02 cm-1. About 6300 lines with a minimal intensity value of 5.0 × 10-27 cm/molecule are found in the recorded spectrum. 4835 recorded lines are assigned to 5185 transitions of five water isotopologues (H216O, H217O, H218O, HD16O, and HD17O). H217O lines are assigned to 14 vibration bands. Most of them are the lines of the ν2 + 3, 3ν2 + ν3, ν1 + ν2 + ν3, ν1 + 2, and 2ν1 + ν2. The lines of the ν1 + 2ν2 + ν3 - ν2, 2ν1 + ν3 - ν2 and 2ν1 + 2 - ν2 hot bands are assigned for the first time. The assigned lines allow us to determine 153 new vibration-rotation energies of nine vibrational states of the H217O molecule and 22 energies of two states of the HD17O molecule. The data obtained are compared with the results of previous studies, the HITRAN2020 spectroscopic database, and W2020 list.

Keywords:

Fourier Transform spectroscopy, water isotopologue, H217O, HD17O, rotation–vibration energy level

References:

1. Tolchenov R.N., Tennyson J. Water line parameters for weak lines in the range 7400–9600 cm-1 // J. Mol. Spectrosc. 2005. V. 231. P. 23–27. DOI: 10.1016/j.jms.2004.12.001.
2. Schermaul R., Learner R.C.M., Canas A.A.D., Brault J.W., Polyansky O.L., Belmiloud D., Zobov N.F., Tennyson J. Weak line water vapor spectra in the region 13200–15000 cm-1 // J. Mol. Spectrosc. 2002. V. 211. P. 169–178. DOI: 10.1006/jmsp.2001.8498.
3. Liu A.-W., Hu S.-M., Camy-Peyret C., Mandin J.-Y., Naumenko O., Voronin B. Fourier transform absorption spectra of H217O and H218O in the 8000–9400 cm-1 spectral region // J. Mol. Spectrosc. 2006. V. 237. P. 53–62. DOI: 10.1016/j.jms.2006.02.008.
4. Régalia L., Oudot C., Mikhailenko S., Wang L., Thomas X., Jenouvrier A., Von der Heyden P. Water vapor line parameters from 6450 to 9400 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 136. P. 119–136. DOI: 10.1016/j.jqsrt.2013.11.019.
5. Mikhailenko S., Kassi S., Wang L., Campargue A. The absorption spectrum of water in the 1.25 mm transparency window (7408–7920 cm-1) // J. Mol. Spectrosc. 2011. V. 269. P. 92–103. DOI: 10.1016/j.jms.2011.05.005.
6. Campargue A., Mikhailenko S.N., Lohan B.G., Karlovets E.V., Mondelain D., Kassi S. The absorption spectrum of water vapor in the 1.25 mm atmospheric window (7911–8337 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 157. P. 135–152. DOI: 10.1016/j.jqsrt.2015.02.011.
7. Modelain D., Mikhailenko S.N., Karlovets E.V., Béguer S., Kassi S., Campargue A. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 206–212. DOI: 10.1016/j.jqsrt.2017.03.029.
8. Spektroskopiya atmosfernyh gazov. URL: http://spectra.iao.ru/molecules/simlaunch?mol=1 (data obrashcheniya: 1.01.2022).
9. Partridge H., Schwenke D.W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 1997. V. 106. P. 4618–4639. DOI: 10.1063/1.473987.
10. Schwenke D.W., Partridge H. Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. 2000. V. 113. P. 6592–6597. DOI: 10.1063/1.1311392.
11. Mikhailenko S.N., Naumenko O.V., Nikitin A.V., Vasilenko I.A., Liu A.-W., Song K.-F., Ni H.-Y., Hu S.-M. Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 653–669. DOI: 10.1016/j.jqsrt.2012.02.009.
12. Vasilchenko S.S., Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. The absorption spectrum of H218O in the range 13400–14460 cm-1 // Opt. Spectrosc. 2012. V. 113. P. 451–455. DOI: 10.1134/S0030400X12110069.
13. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. LED-based Fourier transform spectroscopy of H218O in the 15000–16000 cm-1 range // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 156. P. 36–46. DOI: 10.1016/j.jqsrt.2015.02.001.
14. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. Study of H216O and H218O absorption in the 16,460–17.200 cm-1 range using LED-based Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 217. P. 170–177. DOI: 10.1016/j.jqsrt.2018.05.032.
15. Bernstein H.J., Herzberg G. Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4 to 0.7 m // J. Chem. Phys. 1948. V. 16. P. 30–38. DOI: 10.1063/1.1746650.
16. Serdyukov V.I., Sinitsa L.N., Vasil'chenko S.S., Voronin B.A. Vysokochuvstvitel'naya Fur'e-cpektroskopiya v vysokochastotnoj oblasti s nebol'shimi mnogohodovymi kyuvetami // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 240–246; Serdyukov V.I., Sinitsa L.N., Vasil'chenko S.S., Voronin B.A. Highsensitive Fourier-transform spectroscopy with shortbase multipass absorption cells // Atmos. Ocean. Opt. 2013. V. 26. P. 329–336. DOI: 10.1134/S1024856013040131.
17. Vasil'chenko S.S., Serdukov V.I. Spektr izlucheniya neona kak reper chastotnoj shkaly dlya spektrofotometrov // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 822–825; Vasil'chenko S.S., Serdukov V.I. Emission spectrum of neon as a frequency reference for spectrophotometers // Atmos. Ocean. Opt. 2013. V. 26. P. 154–158. DOI: 10.1134/S1024856013020139.
18. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tόbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
19. Nikitin A.V., Kochanov R.V. Vizualizatsiya i identifikatsiya spektrov programmoj SpectraPlot // Optika atmosfery i okeana. 2011. V. 24, N 11. P. 936–941.
20. Hu S.-M., He S.-G., Zheng J.-J., Wang X.-H., Ding Y., Zhu Q.-S. High-resolution analysis of the ν2 + 2 ν3 band of HDO // Chinese Physics. 2001. V. 10. P. 1021–1027. DOI: 10.1088/1009-1963/10/11/306.
21. Naumenko O.V., Voronina S., Hu S.-M. High resolution Fourier transform spectrum of HDO in the 7500–8200 cm-1 region: Revisited // J. Mol. Spectrosc. 2004. V. 227. P. 151–157. DOI: 10.1016/j.jms.2004.06.002.
22. Régalia L., Thomas X., Rennesson T., Mikhailenko S. Line parameters of water vapour enriched by 18O from 6525 to 8011 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. V. 235. P. 257–271. DOI: 10.1016/j.jqsrt.2019.06.031.
23. Régalia L., Mikhailenko S. Spectral line parameters of H218O molecule in the 8050–9300 cm-1 region // Abstracts of Reports of XIX Symposium on High Resolution Molecular Spectroscopy HighRus-2019, Tomsk, 2019. P. 37. URL: https://symp.iao.ru/files/symp/hrms/19/ru/ abstr_10531.pdf.
24. Furtenbacher T., Tόbiás R., Tennyson J., Polyansky O.L., Kyuberis A.A., Ovsyannikov R.I., Zobov N.F., Császár A.G. The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H217O and H218O with an update to H216O // J. Phys. Chem. Ref. Data. 2020. V. 49. P. 043103. DOI: 10.1063/5.0030680.
25. Bubukina I.I., Zobov N.F., Polyanskij O.L., Shirin S.V., Yurchenko S.N. Optimizirovannaya poluempiricheskaya poverhnost' potentsial'noj energii H216O до 26 000 cm-1 // Optika i spektroskopiya. 2011. V. 110, N 2. P. 186–193.
26. Mikhailenko S.N., Kassi S., Mondelain D., Gamache R.R., Campargue A. A spectroscopic database for water vapor between 5850 and 8340 cm−1 // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 179. P. 198–216. DOI: 10.1016/j.jqsrt.2016.03.035.
27. Mikhailenko S., Kassi S., Mondelain D., Campargue A. Water vapor absorption between 5690 and 8340 cm−1: Accurate empirical line centers and validation tests of calculated line intensities // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 245. P. 106840. DOI: 10.1016/j.jqsrt.2020.106840.
28. Kyuberis A.A., Zobov N.F., Naumenko O.V., Voronin B.A., Polyansky O.L., Lodi L., Liu A., Hu S.-M., Tennyson J. Room temperature line lists for deuterated water // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 175–185. DOI: 10.1016/j.jqsrt.2017. 06.026.
29. Tennyson J., Bernath P.F., Brown L.R., Campargue A., Carleer M.R., Császár A.G., Gamache R.R., Hodges J.T., Jenouvrier A., Naumenko O.V., Polyansky O.L., Rothman L.S., Toth R.A., Vandaele A.C., Zobov N.F., Daumont L., Fazliev A.Z., Furtenbacher T., Gordon I.E., Mikhailenko S.N., Shirin S.V. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H217O and H218O // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 573–596. DOI: 10.1016/j. jqsrt.2009.02.014.
30. Lodi L., Tennyson J. Line lists for H218O and H217O based on empirical line positions and ab initio intensities // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 850–858. DOI: 10.1016/j.jqsrt.2012.02.023.
31. Polyansky O.L., Kyuberis A.A., Lodi L., Tennyson J., Yurchenko S.N., Ovsyannikov R.I., Zobov N.F. ExoMol molecular line lists XIX: High-accuracy computed hot line lists for H216O and H218O // Mon. R. Astron. Soc. 2017. V. 466. P. 1363–1371. DOI: 10.1093/mnras/stw3125.