Abstract:
The polarization elements of the light scattering matrix in the vicinity of the backscattering direction of a perfect hexagonal column and a particle of a random convex polyhedral shape are studied within the physical optics approximation. The study was carried out for particles with a size of 10–100 microns for a wavelength of 0.532 microns. It is shown that, within the vicinity of the coherent backscattering peak, the polarization elements of the matrix have significant local extrema. At the same time, their angular width practically does not depend on the shape of the particle, but significantly depends on the size. The results are of interest for the interpretation of lidar measurements in cirrus clouds.
Keywords:
light scattering, physical optics method, atmospheric ice crystals, cirrus clouds
Figures:
References:
- Liou K.-N., Yang P. Light scattering by ice crystals. Fundamentals and applications. Cambridge: Cambridge university Press, 2016. 460 p.
- Tsekeri A., Amiridis V., Louridas A., Georgoussis G., Frendenthaler V., Metallinos S., Doxastakis G., Gasteiger J., Siomos N., Paschou P., et al. Polarization lidar for detecting dust orientation: System design and calibration // Atmos. Meas. Tech. 2021. V. 14. P. 7453–7474.
- Mishchenko M.I., Rosenbush V.K., Kiselev N.N., Lupishko D.F., Tishkovets V.P., Kaydash V.G., Belskaya I.N., Efimov Y.S., Shakhovskoy N.M. Polarimetric Remote Sensing of Solar System Objects. Kyiv: Akademperiodika, 2010. 291 p.
- Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles. San Diego: Academic, 2000. 690 p.
- Taflove A. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 1998. 735 p.
- Yurkin M.A., Maltsev V.P., Hoekstra A.G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 106. P. 546–557.
- Zubko E., Shmirko K., Pavlov A., Sun W., Schuster G.L., Hu Y., Stamnes S., Omar A., Baize R.R., McCormick M.P., et al. Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity // Opt. Lett. 2021. V. 46. P. 2352–2355.
- Zubko E., Weinbergern A.J., Zubko N., Shkuratov Yu., Videen G. Umov effect in single-scattering dust particles: Effect of irregular shape // Opt. Lett. 2017. V. 42. P. 1962–1965.
- Grynko Y., Shkuratov Y., Forstner J. Intensity surge and negative polarization of light from compact irregular particles // Opt. Lett. 2018. V. 43. P. 3562–3565.
- Grynko Y., Shkuratov Y., Forstner J. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness // Opt. Lett. 2016. V. 41. P. 3491–3494.
- Yang P., Liou K.N. Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35. P. 6568–6584.
- Macke A. Scattering of light by polyhedral ice crystals // Appl. Opt. 1993. V. 32. P. 2780–2788.
- Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 175–183.
- Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N., Borovoi A.G. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27. P. 32984–32993.
- Yang P., Liou K.N. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models // J. Opt. Soc. Am. 1995. V. A12. P. 162–176.
- Masuda K., Ishimoto H., Mano Y. Efficient method of computing a geometric optics integral for light scattering by nonspherical particles // Pap. Meteorol. Geophys. 2012. V. 63. P. 15–19.
- Muinonen K. Scattering of light by crystals: A modified Kirchhoff approximation // Appl. Opt. 1989. V. 28. P. 3044–3050.
- Iwasaki S., Okamoto H. Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces // Appl. Opt. 2001. V. 40. P. 6121–6129.
- Sato K., Okamoto H. Characterization of Z(e) and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals // J. Geophys. Res. 2006. V. 111. N D22213.
- Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1492–1508.
- Baran A.J., Ishimoto H., Sourdeval O., Hesse E., Harlow C. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 206. P. 83–100.
- Hesse E., Taylor L., Collier C.T., Penttila A., Nousiainen T., Ulanowski Z. Discussion of a physical optics method and its application to absorbing smooth and slightly rough hexagonal prisms // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 54–67.
- Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. M.: Fizmatlit, 2022. 384 p.
- Kokhanenko G.P., Balin Y.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning Polarization Lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers // Atmos. Meas. Tech. 2020. V. 13. P. 1113–1127.
- Reichardt J., Wandinger U., Klein V., Mattis I., Hilber B., Begbie R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements // Appl. Opt. 2012. V. 51. P. 8111–8131.
- Mishchenko M.I., Travis L.D., Lacis A.A. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge: Cambridge University Press, 2006. 478 p.
- Mishchenko M.I., Dlugach J.M., Liu L., Rosenbush V.K., Kiselev N.N., Shkuratov Y.G. Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects // Astrophys. J. Lett. 2009. V. 705. L118–L122.
- Muinonen K. Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution // Waves Random Media. 2004. V. 14. P. 365–388.
- Ozrin V.D. Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers // Waves Random Media. 1992. V. 2. P. 141–164.
- Penttilä A., Lumme K., Hadamcik E., Levasseur-Regourd A.-C. Statistical analysis of asteroidal and cometary polarization phase curves // Astron. Astrophys. 2005. V. 432. P. 1081–1090.
- Petrova E.V., Jockers K., Kiselev N.N. Light scattering by aggregates with sizescomparable to the wavelength: An application to cometary dust // Icarus. 2000. V. 148. P. 526–536.
- Petrova E.V., Tishkovets V.P., Jockers K. Polarization of light scattered by Solar system bodies and the aggregate model of dust particles // Sol. Syst. Res. 2004. V. 38. P. 354–371.
- Rosenbush V.K. The phase-angle and longitude dependence of polarization for Callisto // Icarus. 2002. V. 159. P. 145–155.
- Shkuratov Yu., Ovcharenko A., Zubko E., Volten H., Muñoz O., Videen G. The negative polarization of light scattered from particulate surfaces and of independently scattering particles // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 88. P. 267–284.
- Shkuratov Yu., Bondarenko S., Kaydash V., Videen G., Muños O., Volten H. Photometry and polarimetry of particulate surfaces and aerosol particles over a wide range of phase angles // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 106. P. 487–508.
- Wang Z., Cui S., Zhang Z., Yang J., Gao H., Zhang F. Theoretical extension of universal forward and backward Monte Carlo radiative transfer modeling for passive and active polarization observation simulations // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 235. P. 81–94.
- Shkuratov Y.G., Muinonen K., Bowell E., Lumme K., Peltoniemi J.I., Kreslavsky M.A., Stankevich D.G., Tishkovetz V.P., Opanasenko N.V., Melkumova L.Y. A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies // Earth Moon Planets. 1994. V. 65. P. 201–246.
- Mishchenko M.I., Luck J.-M., Nieuwenhuizen T.M. Full angular profile of the coherent polarization opposition effect // J. Opt. Soc. Am. A. 2000. V. 17. P. 888–891.
- Videen G., Muinonen K., Lumme K. Coherence, power laws, and the negative polarization surge // Appl. Opt. 2003. V. 42. P. 3647–3652.
- Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23. P. 11995–12003.
- Mishchenko M.I., Travis L.D., Hovenier J.W. Special issue on light scattering by nonspherical particles // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 61.
- Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983. 530 p.
- Zubko E., Muinonen K., Shkuratov Y., Hadamcik E., Levasseur-Regourd A.-C., Videen G. Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2 // Astron. Astrophys. 2012. V. 544. P. L8.
- Shkuratov Y., Opanasenko N., Zubko E., Grynko Y., Korokhin V., Pieters C., Videen G., Mall U., Opanasenko A. Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles // Icarus. 2007. V. 187, N 2. P. 406–416.
- Lyot B. Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Orléans: H. Tessier, 1929. 161 p.
- Dollfus A., Bowell E. Polarimetric properties of the lunar surface and its interpretation. Part I. Telescopic observations // Astron. Astrophys. 1971. V. 10. P. 29.
- Ice cloud bulk scattering models. URL: https://www.ssec.wisc.edu/ice_models/ (last aссess: 8.09.2022).
- Borovoi A., Konoshonkin A., Kustova N. The physics-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
- Konoshonkin A.V., Kustova N.V., Borovoi A.G., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 12–23.
- Konoshonkin A.V., Kustova N.V., Borovoi A.G. Algoritm trassirovki puchkov dlya zadachi rasseyaniya sveta na atmosfernyh ledyanyh kristallah. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
- Mitchell D.L. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics // J. Atmos. Sci. 1994. V. 51. P. 797– 816.
- Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Otsenka vliyaniya pogloshcheniya na rasseyanie sveta na atmosfernyh ledyanyh chastitsah dlya dlin voln, harakternyh dlya zadach lazernogo zondirovaniya atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 381–385; Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 564–568.
- Yang P., Baum B.A., Heymsfield A.J., Hu Y.X., Huang H.-L., Tsay S.-C., Ackerman S. Single-scattering properties of droxtals // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 79–80. P. 1159–1169.
- Um J., McFarquhar G.M. Single-scattering properties of aggregates of bullet rosettes in cirrus // J. Appl. Meteorol. Clim. 2007. V. 46. P. 757–775.
- Borovoi A., Kustova N., Konoshonkin A. Interference phenomena at backscattering by ice crystals of cirrus clouds // Opt. Exp. 2015. V. 23. P. 24557–24571.
- Yurkin M.A., Hoekstra A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2234–2247.