Abstract:
We propose and analyze a new method for total ozone columns (TOC) retrieving by interpreting satellite-measurements of outgoing thermal radiation of the Earth (spectrometer IKFS-2, Russian satellite “Meteor-M” N 2). The new method is based on an inverse operator which is constructed using ground-based standard observations of TOC (Dobson and Brewer spectrophotometers) and satellite measurements together with multilinear regression. The method is analyzed using standard ground-based TOC measured by Dobson at Voeikovo station, Leningrad region (Voeikov Main Geophysical Observatory). The analysis shows that multilinear regression between TOC from ground-based measurements and spectra of outgoing Earth radiation by satellite observations approximates TOC in Voeikovo for 2015–2020 with an error of 2.8% and a correlation coefficient (CC) of 0.97. TOC time series retrieved from the inverse problem by the regression method has an error of 3.1% and a CC of 0.97. The method suggested can be implemented in different Earth regions with satellite observations and TOC retrieved from ozone measurements at World Meteorological Organization (WMO) stations.
Keywords:
total ozone columns, inverse problem, multilinear regression method, IKFS-2, Dobson spectrophotometer
References:
-
- WMO. Scientific Assessment of Ozone Depletion. Report N 58. Geneva, Switzerland. 2018. 588 p.
- Timofeev Yu.M. Global'naya sistema monitoringa parametrov atmosfery i poverhnosti. SPb.: SPbGU, Fiz. fakul'tet. 2010. 129 p.
- Timofeev Yu.M., Nerobelov G.M., Polyakov A.V., Virolajnen Ya.A. Sputnikovyj monitoring ozonosfery // Meteorol. i gidrol. 2021. V. 46, N 12. P. 71–79. DOI: 10.52002/0130-2906-2021-12-71-79.
- Polyakov A.V., Timofeev Yu.M., Virolajnen Ya.A. Primenenie iskusstvennyh nejronnyh setej v temperaturno-vlazhnostnom zondirovanii atmosfery // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 3. P. 373–380. DOI: 10.7868/S0002351514030109.
- Polyakov A., Virolainen Ya., Nerobelov G., Timofeyev Yu., Solomatnikova A. Total ozone measurements using IKFS-2 spectrometer aboard “Meteor-M” N 2 satellite in 2019–2020 // Int. J. Rem. Sens. 2021. V. 42, N 22. P. 8709–8733. DOI: 10.1080/01431161.2021.1985741.
- McPeters R., Kroon M., Labow G., Brinksma E., Balis D., Petropavlovskikh I., Veefkind J.P., Bhartia P.K., Levelt P.F. Validation of the Aura Ozone Monitoring Instrument total column ozone product // J. Geophys. Res. 2008. V. 113. D15S14. DOI: 10.1029/2007JD008802.
- Fioletov V.E., Kerr J.B., McElroy C.T., Wardle D.I., Savastiouk V., Grajnar T.S. The Brewer reference triad // Geophys. Res. Lett. 2005. V. 32. L20805. DOI: 10.1029/2005GL024244.
- Zvyagintsev A.M., Ivanova N.S., Kuznetsova I.N., Nahaev M.I., Nikiforova M.P. Monitoring obshchego soderzhaniya ozona i UF-obluchennosti: osnovnye rezul'taty // Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. 2017. V. 28, N 6. P. 85–98. DOI: 10.21513/0207-2564-2017-6-85-98.
- Golovin Yu.M., Zavelevich F.S., Nikulin A.G., Kozlov D.A., Monahov D.O., Kozlov I.A., Arhipov S.A., Tselikov V.A., Romanovskij A.S. Bortovye infrakrasnye Fur'e-spektrometry dlya temperaturno-vlazhnostnogo zondirovaniya atmosfery Zemli // Issled. Zemli iz kosmosa. 2013. N 6. P. 25–37.
- Timofeyev Yu.M., Uspensky A.B., Zavelevich F.S., Polyakov A.V., Virolainen Y.A., Rublev A.N., Kukharsky A.V., Kiseleva J.V., Kozlov D.A., Kozlov I.A., Nikulin A.G., Pyatkin V.P., Rusin E.V. Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” N 2 – Four years in orbit // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 238. 106579. DOI: 10.1016/j.jqsrt.2019.106579.
- Uspenskij A.B., Timofeev Yu.M., Kozlov D.A., Chernyj I.V. Razvitie metodov i sredstv distantsionnogo temperaturno-vlazhnostnogo zondirovaniya zemnoj atmosfery // Meteorol. i gidrol. 2021. N 12. P. 33–44.
- Nerobelov G., Timofeyev Y., Virolainen Y., Polyakov A., Solomatnikova A., Poberovskii A., Kirner O., Al-Subari O., Smyshlyaev S., Rozanov E. Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia // Remote Sens. 2022. N 14. P. 3944. DOI: 10.3390/rs14163944.
- Rodgers C.D. Inverse methods for atmospheric sounding. Theory and Practice // Ser. Atmos. Ocean. Planet. Phys. 2000. V. 2. P. 256.
- Polyakov A.V., Timofeev Yu.M., Virolajnen Ya.A., Kozlov D.A. Monitoring obshchego soderzhaniya ozona v atmosfere s ispol'zovaniem rossijskoj apparatury IKFS-2 // Zhurn. prikl. spektroskopii. 2019. V. 86, N 4. P. 597–601.
- European Space Agency Ozone-cci: User Requirement Document (URD). 2021. Version 3.1. P. 48.
- Boynard A., Hurtmans D., Koukouli M.E., Goutai F., Bureau J., Safieddine S., Lerot Ch., Hadji-Lazaro J., Wespes C., Pommereau J.-P., Pazminol A., Zyrichidou I., Balis D., Barbe A., Mikhailenko S.N., Loyola D., Valks P., Van Roozendael M., Coheur P.-F., Clerbaux C. Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements // Atmos. Meas. Tech. 2016. V. 9. P. 4327–4353. DOI: 10.5194/amt-9-4327-2016.
- Boynard А., Hurtmans D., Garane K., Goutail F., Hadji-Lazaro J., Koukouli M.E., Wespes C., Vigouroux C., Keppens A., Pommereau J.-P., Pazmino A., Balis D., Loyola D., Valks P., Sussmann R., Smale D., Coheur P.-F., Clerbaux C. Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements // Atmos. Meas. Tech. 2018. V. 11. P. 5125–5152. DOI: 10.5194/amt-11-5125-2018.