Vol. 35, issue 11, article # 11

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I. Estimation of the limiting sensitivity of the laser fragmentation/laser-induced fluorescence method for the detection of vapors of nitrocompounds in the atmosphere. // Optika Atmosfery i Okeana. 2022. V. 35. No. 11. P. 948–955. DOI: 10.15372/AOO20221111 [in Russian].
Copy the reference to clipboard
Abstract:

The limiting sensitivity of a method for detecting vapors of nitrocompounds in the atmosphere based on laser fragmentation/laser-induced fluorescence is estimated in calculations with the developed kinetic model of the LF/LIF process. The calculations take into account the influence of atmospheric nitrogen dioxide as a limiter of the sensitivity of the method when operating in a real atmosphere. It is shown that if the concentration of nitrogen dioxide in the atmosphere does not exceed 10 ppb, the maximum detectable concentrations of nitrobenzene and o-nitrotoluene vapors are ppb-level. It was also shown that the one-color excitation method usually used for the detection of nitrocompounds does not allow attaining the maximum efficiency of the LF/LIF process.

Keywords:

laser fragmentation, nitrocompound, nitrobenzene, nitrotoluene, laser-induced fluorescence, nitric oxide, NO-fragment

References:

  1. Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605.
  2. Rodgers M.O., Davis D.D. A UV-photofragmentation/laser-Induced fluorescence sensor for the atmospheric detection of HONO // Environ. Sci. Technol. 1989. V. 23, N 9. P. 1106–1112.
  3. Sandholm S.T., Bradshaw J.D., Dorris K.S., Rodgers M.O., Davis D.D. An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2 // J. Geophys. Res. 1990. V. 95, N D7. P. 10,155–10,161.
  4. Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107–2114.
  5. Lemire G.W., Simeonsson J.B., Sausa R.C. Monitoring of vapor-phase nitro compounds using 226-nm radiation: Fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection // Anal. Chem. 1993. V. 65, N 5. P. 529–533.
  6. Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of NO from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
  7. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
  8. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
  9. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
  10. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (n = 0–3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
  11. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
  12. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
  13. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
  14. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
  15. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
  16. Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P. 695407–8.
  17. Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L–7.
  18. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
  19. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
  20. Бобровников С.М., Горлов Е.В. Лидарный метод обнаружения паров взрывчатых веществ в атмосфере // Оптика атмосф. и океана. 2010. Т. 23, № 12. С. 1055–1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean Opt. 2011. V. 24, N 3. P. 235–241.
  21. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
  22. Lin M.-F., Lee Y.T., Ni C.-K., Xu S., Lin M.C. Photodissociation dynamics of nitrobenzene and o-nitrotoluene // J. Chem. Phys. 2007. V. 126, N 6. P. 064310-1–064310-11.
  23. Kosmidis C., Marshall A., Clark A., Deas R.M., Ledingham K.W.D., Singhal R.P. Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser light // Rapid Commun. Mass Spectrom. 1994. V. 8, N 8. P. 607–614.
  24. Weickhardt C., Tonnies K. Short pulse laser mass spectrometry of nitrotoluenes: Ionization and fragmentation behavior // Rapid Commun. Mass Spectrom. 2002. V. 16, N 5. P. 442–446.
  25. SenGupta S., Upadhyaya H.P., Kumar A., Dhanya S., Naik P.D., Bajaj P. Photodissociation dynamics of nitrotoluene at 193 and 248 nm: Direct observation of OH formation // Chem. Phys. Lett. 2008. V. 452, N 4–6. P. 239–244.
  26. Okabe H. Photochemistry of small molecules. New York: John Wiley and Sons, 1978. 413 р.
  27. Castle K.J., Abbott J.E., Peng X., Kong W. Photodissociation of o-Nitrotoluene between 220 and 250 nm in a uniform electric field // J. Phys. Chem. A. 2000. V. 104, N 45. P. 10419–10425.
  28. Morrell C., Breheny C., Haverd V., Cawley A., Hancock G. The 248 nm photolysis of NO2/N2O4: Time-resolved Fourier transform infrared emission from NO and NO2, and quenching of NO (n = 5–8) // J. Chem. Phys. 2002. V. 117, N 24. P. 11121–11130.
  29. McFarlane J., Polanyi J.C., Shapter J.G. Photodissociation dynamics of NO2 at 248 nm // J. Photochem. Photobiol. A: Chem. 1991. V. 58, N 2. P. 139–172.
  30. Keller-Rudek H., Moortgat G.K., Sander R., Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Syst. Sci. Data. 2013. V. 5, N 2. P. 365–373.
  31. Hancock G., Morrison M., Saunders M. Vibrational relaxation of NO (n = 1–16) in collisions with O2 studied by time resolved Fourier transform infrared emission // Chem. Phys. Lett. 2006. V. 425, N 4–6. P. 216–220.
  32. Hallin K.-E.J., Merer A.J. The 2491 A band system of NO2. Rotational structure and evidence for predissociation in the zero-point level // Can. J. Phys. 1976. V. 54, N 11. P. 1157–1171.
  33. Luque J., Crosley D.R. Radiative and predissociative rates for NO A 2Σ+ n¢ = 0–5 and D2Σ+ n¢ = 0–3 // J. Chem. Phys. 2000. V. 112, N 21. P. 9411–9416.
  34. Nee J.B., Juan C.Y., Hsu J.Y., Yang J.C., Chen W.J. The electronic quenching rates of NO (A 2Σ+, n¢ = 0–2) // J. Chem. Phys. 2004. V. 300, N 1. P. 85–92.