Vol. 35, issue 08, article # 2

Dеichuli V. M., Petrova T. M., Solodov A. A., Solodov A. M. Broadening and shift coefficients of H2O absorption lines induced by CO2 pressure in the 2.7 μm spectral region. // Optika Atmosfery i Okeana. 2022. V. 35. No. 08. P. 608–612. DOI: 10.15372/AOO20220802 [in Russian].
Copy the reference to clipboard
Abstract:

The H2O absorption lines broadened by the carbon dioxide pressure were recorded using IFS 125 HR Fourier spectrometer in the spectral region of 3760–4160 cm-1. The values of the broadening and shift coefficients of the H2O absorption lines are determined for the Voigt profile and the modified Voigt profile which takes into account the dependence of the broadening on the speed of the colliding molecules. The parameters of the H2O absorption lines obtained in the work allow more accurate determination of the H2O concentration in the carbon dioxide atmospheres of the planets, as well as more accurate calculation of these parameters for other spectral regions.
Supplementary material (Appendix): https://ao.iao.ru/ auxiliary/35-08-02/08-02_Appendix.pdf.

Keywords:

water molecule, broadening and shift coefficients, Fourier spectroscopy, carbon dioxide

References:

1. Gordon I.E, Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A, Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A, Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I.M., Kofman V.R, Kwabia–Tchana F.M, Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky P.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander A.J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949.
2. Jacquinet-Husson N., Armante R., Scott N.A., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Rotger M., Tyuterev V., Chris Benner D., Devi V.M., Boudon V., Brown L.R., Drouin B.J., Yu S.S., Sung K., Buldyreva J., Campargue A., Coudert L.H., Flaud J.M., Jolly A., Perrin A., Down M.J., Hill C., Lodi L., Tennyson J., Fayt A., Fittschen C., Gamache R.R., Harrison J.J., Hodnebrog Ø., Hu S.-M., Liu A.W., Jacquemart D., Jiménez E., Lavrentieva N.N., Lyulin O.M., Mikhailenko S., Naumenko O.V., Nikitin A., Perevalov V.I., Polovtseva E., Tashkun S.A., Voronin B.A., Massie S.T., Müller H.S.P., Nielsen C.J., Orphal J., Predoi-Cross A., Ruth A.A., Vander A.J., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327. P. 31–72.
3. Régalia L., Cousin E., Gamache R.R., Vispoel B., Robert S., Thomas X. Laboratory measurements and calculations of line shape parameters of the H2O–CO2 collision system // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 231. P. 126.
4. Brown L.R., Humphrey C.M., Gamache R.R. CO2-broadened water in the pure rotation and ν2 fundamental regions //J. Mol. Spectrosc. 2007. V. 246, P. 1–21.
5. Gamache R.R., Neshyba S.P., Plateaux J.J., Barbe A., Regalia L., Pollack J.B. CO2-broadening of water-vapor lines // J. Mol. Spectrosc. 1995. V. 170. P. 131–151.
6. Lavrent'eva N.N., Voronin B.A., Fedorova A.A. Spisok linij H216O dlya issledovaniya atmosfer Venery i Marsa // Opt. i spektroskop. 2015. V. 118, N 1. P. 11–18.
7. Borkov Y.G., Petrova T.M., Solodov A.M., Solodov A.A. Measurements of the broadening and shift parameters of the water vapor spectral lines in the 10,100–10,800 cm-1 region induced of carbon dioxide // J. Mol. Spectrosc. 2018. V. 344. P. 39–45.
8. Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M., Naumenko O.V. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177 P. 253–260.
9. Shcherbakov A.P. Primenenie metodov teorii raspoznavaniya obrazov dlya identifikatsii linij v kolebatel'no-vrashchatel'nyh spektrah // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 947–958.
10. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
11. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 199–203.
12. Deichuli V.M., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Solodov A.A. Koeffitsienty ushireniya i sdviga linij pogloshcheniya molekuly vody v oblasti 8650–9020 cm-1 // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 358–364; Deichuli V.M., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Solodov A.A. Broadening and shift coefficients of H2O absorption lines in the 8650–9020 cm-1 spectral region // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 499–505.