Vol. 35, issue 05, article # 5

Maior A. Yu., Golik S. S., Tolstonogova Yu. S., Ilin A. A., Bukin O. A. Dependence of the intensity of emission lines of chemical elements on the duration of laser pulses in the method of filament-induced breakdown spectroscopy of aqueous aerosol. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 376–380. DOI: 10.15372/AOO20220505 [in Russian].
Copy the reference to clipboard
Abstract:

The dependence of the intensity of emission lines Ca (393.3, 396.8, 422.6 nm), Mg (383.6 nm), and Na (589 nm) on the laser pulse duration in the method of filament-induced breakdown spectroscopy is investigated. The filament was excited in seawater aerosols droplets of 0.8–2 mm in size by laser pulses of 70, 230, 500, and 900 fs in duration at a constant pulse energy of 3.0 mJ. It is shown that with an increase in the laser pulse duration, the intensity of the emission lines of the studied elements increased, with the exception of the magnesium line. Optimal values of the laser pulse duration for the excitation of Ca, Mg, and Na lines in a seawater aerosol are derived.

Keywords:

filament-induced breakdown spectroscopy, laser pulse duration, aerosol analysis, femtosecond radiation, Ca, Na, Mg

References:

1. Aragón C., Aguilera J.A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods // Spectrochim. Acta Part B: At. Spectrosc. 2008. V. 63, N 9. P. 893–916.
2. Kul'chin Yu.N., Voznesenskij S.S., Gamayunov E.L., Golik S.S., Il'in A.A., Kamenev O.T., Nikitin A.I., Pavlov A.N., Popik A.Yu., Romashko R.V., Subbotin E.P. Fotonnye metody i tekhnologii monitoringa okeana i atmosfery // Kvant. elektron. 2020. V. 50, N 5. P. 475–488.
3. Laser-induced breakdown spectroscopy // Singh J.P., Thakur S.N. (eds.). / New York. Elsevier, 2020. 620 p.
4. Cremers D.A., Radziemski L.J. Handbook of Laser-Induced Breakdown Spectroscopy. Chichester: John Wiley & Sons, 2013. 432 p.
5. Rohwetter Ph., Stelmaszczyk K., Wöste L., Ackermann R., Méjean G., Salmon E., Kasparian J., Yu J., Wolf J.-P. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation // Spectrochim. Acta Part B: At. Spectrosc. 2005. V. 60, N 7–8. P. 1025–1033.
6. Xu H.L., Simard P.T., Kamali Y., Daigle J.-F., Marceau C., Bernhardt J., Dubois J., Châteauneuf M., Théberge F., Roy G., Chin S.L. Filament-induced breakdown remote spectroscopy in a polar environment // Laser Phys. 2012. V. 22, N 12. P. 1767–1770. 
7. Finney L.A., Lin J., Skrodzki P.J., Burger M., Nees J., Krushelnick K., Jovanovic I. Filament-induced breakdown spectroscopy signal enhancement using optical wavefront control // Opt. Commun. 2021. V. 490. P. 126902.
8. Labutin T.A., Lednev V.N., Ilyin A.A., Popov A.M. Femtosecond laser-induced breakdown spectroscopy // J. Anal. At. Spectrom. 2016. V. 31, N 1. P. 90–118.
9. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39, N 3. P. 205–228.
10. Kandidov V.P., Shlenov S.A., Silaeva E.P., Dergachev A.A. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya v vozduhe i ee prilozheniya v atmosfernoj optike // Optika atmosf. i okeana. 2010. V. 23, N 10. P. 873–884.
11. Chin S.L., Hosseini S.A., Liu W., Luo Q., Théberge F., Aközbek N., Becker A., Kandidov V.P., Kosareva O.G., Schroeder H. The propagation of powerful femtosecond laser pulses in optical media: Physics, applications, and new challenges // Can. J. Phys. 2005. V. 83, N 9. P. 863–905.
12. Apeksimov D.V., Babushkin P.A., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K., Petrov A.V., Ryabtsev V.M. Issledovaniya emissionnogo svecheniya tverdogo veshchestva i antropogennyh aerozolej v pole moshchnogo femtosekundnogo lazernogo izlucheniya pri ego samofokusirovke v vozduhe dlya tselej distantsionnogo zondirovaniya atmosfery // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 698–704; Apeksimov D.V., Babushkin P.A., Geinz Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K., Petrov A.V., Ryabtsev V.M. Study of the emission glow of solids and anthropogenic aerosols in the field of high-power femtosecond laser radiation during self-focusing in air for remote sensing of the atmosphere // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 6–13.
13. Burger M., Polynkin P., Jovanovic I. Filament-induced breakdown spectroscopy with structured beams // Opt. Express. 2020. V. 28, iss. 24. P. 36812–36821.
14. Gill R.K., Knorr F., Smith Z.J., Kahraman M., Madsen D., Larsen D.S., Wachsmann-Hogiu S. Characterization of femtosecond laser-induced breakdown spectroscopy (fsLIBS) and applications for biological samples // Appl. Spectrosc. 2015. V. 68, N 9. P. 949–954.
15. Bukin O.A., Golik S.S., Il’in A.A., Kul’chin Yu.N., Sokolova E.B., Baulo E.N. Lazernaya iskrovaya spektroskopiya zhidkih sred s vozbuzhdeniem impul'sami femtosekundnoj dlitel'nosti // Optika atmosf. i okeana. 2009. V. 22, N 3. P. 296–300; Bukin O.A., Golik S.S., Il’in A.A., Kul’chin Yu.N., Sokolova E.B., Baulo E.N. Laser-induced breakdown spectroscopy in liquid medium // Atmos. Ocean. Opt. 2009. V. 22, N 2. P. 209–213.
16. Rohwetter Ph., Yu J., Méjean G., Stelmaszczyk K., Salmon E., Kasparian J., Wolf J.-P., Wöste L. Remote LIBS with ultrashort pulses: Characteristics in picosecond and femtosecond regimes // J. Anal. At. Spectrom. 2004. V. 19, N 4. P. 437–444.
17. Noack J., Hammer D.X., Noojin G.D., Rockwell B.A., Vogel A. Influence of pulse duration on mechanical effects after laser-induced breakdown in water // J. Appl. Phys. 1998. V. 83, N 12. P. 7488–7495.
18. Vogel A., Noack J., Nahen K., Theisen D., Busch S., Parlitz U., Hammer D.X., Noojin G.D., Rockwell B.A., Birngruber R. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales // Appl. Phys. B: Lasers Opt. 1999. V. 68, N 2. P. 271–280.
19. Golik S.S., Major A.Yu., Lisitsa V.V., Tolstonogova Yu.S., Il'in A.A., Borovskij A.V., Bukin O.A. Predely obnaruzheniya himicheskih elementov v vodnom aerozole v filamentno-indutsirovannoj emissionnoj spektroskopii // Zhurn. prikl. spektroskop. 2021. V. 88, N 2. P. 275–281.