Vol. 35, issue 01, article # 1

Simonova A. A., Ptashnik I. V. Water dimer contribution to the water vapor self-continuum absorption in fundamental bending and stretching bands. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. 5–11. DOI: 10.15372/AOO20220101 [in Russian].
Copy the reference to clipboard
Abstract:

The nature of the water vapor self-continuum absorption is investigated within fundamental bending and stretching bands at 279–351 K. The integral contribution of the water dimer absorption to the experimental water vapor continuum is preliminary estimated based on the available spectroscopic information as 70–40% in the 1600 cm-1 band and 90–60% in the 3600 cm-1 band; the inverse temperature dependence is shown. The analysis of the temperature dependences of the continuum absorption and its components indicates the probable contribution of the water monomer line wings to the continuum along with the absorption by water dimers.

Keywords:

continuum absorption, water vapour, spectral parameters, absorption bands, water vapor, intermediate line wings, temperature dependence

References:

1. Rubens H., Aschkinass E. Beobachtungen über absorption und emission von wasserdampf und kohlensaure im ultraroten spectrum // Ann. Phys. 1898. V. 300. P. 584–601.
2. Hettner G. Über das ultrarote absorptionsspektrum des wasserdampfes // Ann. Phys. 1918. V. 360. P. 476–496.
3. Elsasser W.M. Far infrared absorption of atmospheric water vapor // Astrophys. J. 1938. V. 87. P. 497–507.
4. Burch D.E. Investigation of the Absorption of Infrared Radiation by Atmospheric Gases. Semiannual Technical Report N U-4784. Aeronutronic Division, Philco Ford Corporation, Aeronutronic Report. 1971. N U-4784.
5. Bignell K.J. The water-vapour infra-red continuum // Q. J. R. Meteorol. Soc. 1970. V. 96. P. 390–403.
6. Varanasi P., Chou S., Penner S.S. Absorption coefficients for water vapor in the 600–1000 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 1968. V. 8. P. 1537–1541.
7. Roberts R.E., Selby J.E.A., Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8–12-mm window // Appl. Opt. 1976. V. 15, N 9. P. 2085–2090.
8. Elsasser W.M. Note on atmospheric absorption caused by the rotational water band // Phys. Rev. J. 1938. V. 53. P. 768.
9. Tvorogov S.D., Nesmelova L.I. Radiatsionnye protsessy v kryl'yah polos atmosfernyh gazov // Izv. AN SSSR. Fiz. atmos. okeana. 1976. V. 12, N 6. P. 627–633.
10. Poberovskij A.V. Issledovanie polos pogloshcheniya vodyanogo para (1,38 i 1,87 mm) pri povyshennyh daleniyah i temperaturah // Problemy fiziki atmosfery. 1976. N. 13. P. 81–87.
11. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm-1 (AFGL-TR-85-0036). 1985. 37 p.
12. Viktorova A.A., Zhevakin S.A. Absorption of micro-radiowaves in air by water vapor dimers // Rep. Acad. Sci. USSR. 1966. V. 171. P. 1061–1064.
13. Penner S.S., Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapour // J. Quant. Spectrosc. Radiat. Transfer. 1967. V. 7. P. 687–690.
14. Vigasin A.A. Water vapor continuous absorption in various mixtures: Possible role of weakly bound complexes // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 64. P. 25–40.
15. Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. Dordrecht: Springer, 2003. P. 23–47.
16. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
17. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852.
18. Tretyakov M.Y., Koshelev M.A., Serov E.A., Parshin V.V., Odintsova T.A., Bubnov G.M. Water Dimer vody i atmosfernyj kontinuum // Uspekhi fiz. nauk. 2014. V. 184, N 11. P. 1199–1215.
19. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12.
20. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Pogloshchenie v kryl'yah polos vodyanogo para i narushenie dlinnovolnovogo priblizheniya dlya tsentrov mass molekul // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 805–815; Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. Dimer Absorption within water vapor bands in the IR region // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 134–140.
21. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33, N 3–4. P. 535–555.
22. Ptashnik I.V. Kontinual'noe pogloshchenie vodyanogo para: kratkaya predystoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459. DOI: 10.15372/AOO20150508.
23. Ptashnik I.V., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 mm bands // J. Quant. Spectrosc. Radiat. Transfer 2019. V. 228. P. 97–105.
24. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers : 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 8. P. 1286–1303.
25. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112, N 18. P. 4324–4335.
26. Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimers // J. Chem. Phys. 2010. V. 132. P. 014304(1–7).
27. Bouteiller Y., Perchard J.P. The vibrational spectrum of (H2O)2: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm-1 // Chem. Phys. 2004. V. 305, N 1–3. P. 1–12.
28. Tretyakov M.Y., Serov E.A., Odintsova T.A. Ravnovesnoe termodinamicheskoe sostoyanie vodyanogo para i stolknovitel'noe vzaimodejstvie molekul // Izv. vuzov. Radiofiz. 2011. V. 54, N 10. P. 778–796.
29. Leforestier C. Water dimer equilibrium constant calculation: A quantum formulation including metastable states // J. Chem. Phys. 2014. V. 140. P. 074106.
30. Ruscic B. Active thermochemical tables: Water and water dimer // J. Phys. Chem. A. 2013. V. 117, N 46. P. 11940–11953.
31. Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water Dimers in the Atmosphere III : Equilibrium Constant from a Flexible Potential // J. Phys. Chem. A. 2006. V. 110. P. 5411–5419.
32. Rocher-Casterline B.E., Ch'ng L.C., Mollner A.K., Reisler H. Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging // J. Chem. Phys. 2011. V. 134. P. 211101(1–4).
33. Buryak I., Vigasin A.A. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface // J. Chem. Phys. 2015. V. 143. P. 234304(1–8).
34. Tret'yakov M.Yu. Vysokotochnaya rezonatornaya spektroskopiya atmosfernyh gazov v millimetrovom i submillimetrovom diapazonah dlin voln. Nizhnij Novgorod: IPF RAN, 2016. 320 p.
35. Buck U., Huisken F. Infrared spectroscopy of size-selected water and methanol clusters // Chem. Rev. 2000. V. 100, N 11. P. 3863–3890.
36. Birk M., Wagner G, Loos J., Shine K.P. 3 µm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107134.
37. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
38. Leforestier C., Tipping R.H., Ma Q. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption // J. Chem. Phys. 2010. V. 132. P. 164302(1–14).
39. Hill T.L. Statistical Mechanics. New York: McGraw-Hil, 1956. 152 p.
40. Stogryn D.E., Hirschfelder J.O. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules // J. Chem. Phys. 1959. V. 31, N 6. P. 1531–1545.