Vol. 34, issue 12, article # 2

Rodimova O. B. On the role of  the continuum absorption definition in the case of the H2O–N2 absorption. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. 934–940. DOI: 10.15372/AOO20211202 [in Russian].
Copy the reference to clipboard
Abstract:

Water vapor continuum absorption in the H2O–N2 mixture is examined on the basis of the CKD model and using the line shape with parameters found from fitting the calculated absorption coefficients to the CRDS data in the 4000–5100 cm-1 window. Differences of these two definitions are analyzed as applied to the IR region. It is shown that the CKD continuum includes the absorption due to excess of the line contour over the Lorentzian one at distances less than 10 cm-1 from the line centers. The possibility is examined of extracting the absorption by additional objects (like water dimers) when calculating the Н2О–N2 continuum absorption on the basis of the ATLW approach.

Keywords:

IR water vapor spectrum, continuum absorption, nitrogen broadening, continuum absorption definition

References:

  1. Burch D.E., Alt R.L. Continuum Absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 Windows. Report AFGL-TR-84-0128. AFGL, 1984. 31 p.
  2. Baranov Y.I. The continuum absorption in H2O + N2 mixtures in the 2000–3250 cm-1 spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281–2286.
  3. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorp­tion in near-infrared windows from laboratory measu­rements // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2557–2577.
  4. Burch D.E. Absorption by H2O in Narrow Windows between 3000–4200 cm-1. Report AFGL-TR-85-0036. AFGL, 1985. 37 p.
  5. Vasilchenko S., Campargue A., Kassi S., Mondelain D. The water vapour self- and foreign-continua in the 1.6 mm and 2.3 mm windows by CRDS at room temperature // J. Geophys. Res.: Atmos. 2019. V. 227. P. 230–238.
  6. Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 mm // Phys. Chem. Chem. Phys. 2015. V. 17. P. 17762–17770.
  7. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  8. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208.
  9. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini1 D., Campargue A. The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 mm // Atmos. Meas. Tech. 2018. V. 11. P. 2159–2171.
  10. Clough S.A., Kneizys F.X., Davies R.W. Line shape and the water vapor continuum // Atmos. Res. 1989. V. 23, iss. 3–4. P. 229–241.
  11. Burch D.E. Continuum Absorption by H2О. Report AFGL-TR-81-0300. AFGL, 1981. 46 p.
  12. Родимова О.Б., Климешина Т.Е. Континуальное поглощение водяным паром при уширении азотом в крыльях ИК-полос Н2О // Оптика атмосф. и океана. 2021. Т. 34, № 2. C. 765–769; Rodimova O.B., Klimeshina T.E. Foreign-continuum absorption in the wings of IR H2O bands // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 93–100.
  13. Birk M., Wagner G., Loos J., Shine K.P. 3 mm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107134-1–22.
  14. Brown A., Tipping R.H. Collision-induced absorption in dipolar molecule – homonuclear diatomic pairs / Camy-Peyret C., Vigasin A.A. (eds) // Proc. NATO Advanced Research Workshop. Dordrecht: Kluwer; 2003. P. 93–99.
  15. Salmi T., Hаnninen V., Garden A.L., Kjaergaard H.G., Tennyson J., Halonen L. Calculation of the O–H stretching vibrational overtone spectrum of the water dimer // J. Phys. Chem. A. 2008. V. 112, N 28. P. 6305–6312.
  16. Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112, N 18. P. 4324–4335.
  17. Fredin L., Nelander B., Ribbegard G. Infrared spectrum of the water dimer in solid nitrogen. I. Assignment and force constant calculations // J. Chem. Phys. 1977. V. 66, is. 9. P. 4065–4072.
  18. Lane J.R., Kjaergaard H.G. XH-stretching overtone transitions calculated using explicitly correlated coupled cluster methods // J. Chem. Phys. 2010. V. 132, is. 17. P. 174304-1–11.