Abstract:
The average annual temperature derivatives analysis was carried out according to the data of 927 weather stations of the Northern Hemisphere for the period 1956–2016. Changes in derivatives are considered as manifestations of the emergent property of a holistic climate system. A measure of these manifestations has been introduced. The measure has a functional form, including averaging positive and negative derivatives and calculating the correlation coefficients along weather stations. The extrema of the derivative temperatures are determined; it is found that the sample distribution of the sums of the opposite extrema of the derivatives is symmetric and has a greater kurtosis than the normal distribution. In the study period, the values of the measure are already close to their limiting values. At that, the climate system's equilibrium state is preserved, while regional fluctuations of individual climate elements have increased. Therefore, an annual assessment of changes in the multichannel monitoring system's measure of emergent properties is required.
Keywords:
climate change monitoring, emergent properties, climate system
Figures:
References:
- Prigozhin I. Vvedenie v termodinamiku neravnovesnyh protsessov. M.: Izd-vo inostr. lit., 1960. 127 p.
- Bertalanfi L. fon. Obshchaya teoriya sistem – kriticheskij obzor. Issledovaniya po obshchej teorii sistem: Sb. perevodov. M.: Progress, 1969. P. 23–82.
- Sherstyukov B.G. O vozmozhnom rezonansnom mekhanizme kolebanij klimata // Tr. VNIIGMI-MTSD. 2018. Iss. 181. P. 52–70.
- Sherstyukov B.G. Rezonansy v Solnechnoj sisteme i v kolebaniyah klimata // Slozhnye sistemy. 2018. Iss. 28, N 3. P. 31–48.
- Byalko A.V., Vaganova N.I., Rumanov E.N. O vozmozhnoj klimaticheskoj neustojchivosti // Dokl. RAN. 2010. V. 431, N 5. P. 617–620.
- Izmeneniya klimata, 2013 year: Fizicheskaya nauchnaya osnova. Vklad Rabochej gruppy I v Pyatyj otsenochnyj doklad Mezhpravitel'stvennoj gruppy ekspertov po izmeneniyu klimata / pod red. T.F. Stokker, D. TSin', D-K. Plattner, M.B. Tignor, S.K. Allen, D. Boshung, A. Nauels, Yu. Sya, V. Beks, P.M. Midglej. Kembridzh, Soedinennoe Korolevstvo i N'yu-Jork, SSHA: Kembridzh yuniversiti press, 2013. 22 p.
- Climate Variability and Extremes during the Past 100 Years / (eds.) S. Brönnimann, T. Ewen, J. Luterbacher, H.F Diaz, R.S Stolarski and U. Neu. Dordrecht: Springer, 2008. 36 p. DOI: 10.1007/978-1-4020-6766-2.
- Simol C., Brunetti M., Maugeri M., Nanni T. Evolution of extreme temperatures in a warming climate // Geophys. Res. Lett. 2011. V. 38. P. L16701. DOI: 10. 1029/2011GL048437.
- Rahmstorf S., Coumou D. Increase of extreme events in a warming world // PNAS, Proc. Natl. Acad. Sci. USA. 2011. V. 108, iss. 44. P. 17905–17909. DOI: 10.1073/pnas.1101766108.
- Donat M.G., Alexander L.V., Yang H., Durre I., Vose R., Dunn R.J.H., Willett K.M., Aguilar E., Brunet M., Caesar J., Hewitson B., Jack C., Klein Tank A.M.G., Kruger A.C., Marengo J., Peterson T.C., Renom M., Oria Rojas C., Rusticucci M., Salinger J., Elrayah A.S., Sekele S.S., Srivastava A.K., Trewin B., Villarroel C., Vincent L.A., Zhai P., Zhang X., Kitching S. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset // J. Geophys. Res. Atmos. 2013. V. 118. P. 2098–2118. DOI: 10.1002/jgrd.50150.
- Papalexiou S.M., AghaKouchak A., Trenberth K.E., Foufoula-Georgiou E. Global, Regional, and Megacity Trends in the Highest Temperature of the Year: Diagnostics and Evidence for Accelerating Trends // Earth’s Future. 2018. V. 6. P. 71–79. DOI: 10.1002/2017EF000709.
- Korol'kov B.P. Termodinamicheskie osnovy samoorganizatsii: monografiya. Irkutsk: IrGUPS, 2011. 120 p.
- Arhiv Universiteta Vostochnoj Anglii [Elektronnyj resurs]. URL: http://metoffice.gov.uk, http://cru.uea.ac.uk (data obrashcheniya: 01.08.20).
- Jones P.D., Lister D.H., Osborn T.J., Harpham C., Salmon M., Morice C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010 // J. Geophys. Res. 2012. V. 117, iss. D5. P. D05127. DOI: 10.1029/2011JD017139.
- Harris I., Osborn T.J., Jones P., Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset Sci. Data 7 109 [Electronic resource]. URL: https://doi.org/10.1038/s41597-020-0453-3 (last access: 01.08.20).
- Osborn T.J., Jones P.D. The CRUTEM4 land-surface air temperature data set: construction, previous versions, and dissemination via Google Earth Earth System // Sci. Data. 2014.V. 6. P. 61–68. DOI: 10.5194/essd-6-61-2014.
- Koshlyakov M.N., Tarakanov R.Yu. Perenos vody cherez Subantarkticheskij front i global'nyj okeanskij konvejer // Okeanologiya. 2011. V. 51, N 5. P. 773–787.
- Vose R.S., Andt D., Banzon V.F., Easterling D.R., Gleason B., Huang B., Kearns E., Lawrimore J.H., Matthew J.M., Peterson T.C., Reynolds R.W., Smith T.M., Williams C.N. Jr., Wuertz D.B. NOAA's Merged Land – Ocean Surface Temperature Analysis // Bull. Amer. Meteor. Soc. 2012. V. 93. P. 1677–1685. DOI: 10.1175/BAMS-D-11-00241.1.
- Perevedentsev Yu.P., Shantalinskij K.M. Izmeneniya prizemnoj temperatury vozduha Severnogo polushariya za period 1850–2014 years // Uch. Zapis. kazanskogo un-ta. 2015. V. 157, kn. 3. P. 8–19.
- Alekseev G.V. Proyavlenie i usilenie global'nogo potepleniya v Arktike // FPK. 2015. V. 1. P. 11–26.
- Walsh J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes // Glob. Plan. Change. 2014. V. 117. P. 52–63. DOI: 10.1016/j.gloplacha.2014. 03.003.
- Dove H.W. Die Verbreitung der Wärme auf der oberfläche der Erde: Erläutert durch Isotermen, thermische Isanomalen und Temperaturcurven. Berlin.: Verlag for Dietrich Reimer, 1852. https://reader.digitale-sammlungen.de/de/fs1/object/goToPage/bsb10058317.html?pageNo=1
- Ye J.-Sh., Gong Y.H., Zhang F., Ren J., Bai X.-K., Zheng Y. Which Temperature and Precipitation Extremes Best Explain the Variation of Warm versus Cold Years and Wet versus Dry Years? // J. Clim. 2018. V. 31. Р. 45–59. DOI: 10.1175/JCLI-D-17-0377.1.