Abstract:
Choice of the parameters of the lens raster in a Shack–Hartmann wavefront sensor with the minimal residual error in the wavefront reconstruction is one of the solutions to the problem of the sensor measurement accuracy. This paper presents the results of numerical experiments on estimating the accuracy of reconstruction of the wavefront distorted by atmospheric turbulence taking into account the transfer functions between the telescope and the sensor and between the raster and the photosensitive matrix of the receiving device.
Keywords:
Shack–Hartmann wavefront sensor, turbulent distortions of the light field, algorithm for calculating lenslet parameters
References:
- Lukin V.P. Formirovanie opticheskih puchkov i izobrazhenij osnove primeneniya sistem adaptivnoj optiki // Uspekhi fiz. nauk. 2014. V. 184, N 16. P. 599–640.
- Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shihovcev A.Yu. Dvuhzerkal'naya adaptivnaya sistema korrekcii atmosfernyh pomekh Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 563–569; Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shikhovtsev A.Yu. Two-mirror adaptive system for correction of atmospheric disturbances of the Large Solar Vacuum Telescope // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 709–717. DOI: 10.1134/S1024856018060064.
- Lukin V.P., Botygina N.N., Antoshkin L.V., Borzilov A.G., Emaleev O.N., Konyaev P.A., Kovadlo P.G., Kolobov D.Yu., Selin A.A., Soin E.L., Shikhovtsev A.Yu., Chuprakov S.A. Mnogokaskadnaya sistema korrekcii izobrazheniya dlya Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 404–413; Lukin V.P., Botygina N.N., Antoshkin L.V., Borzilov A.G., Emaleev O.N., Konyaev P.A., Kovadlo P.G., Kolobov D.Yu., Selin A.A., Soin E.L., Shikhovtsev A.Yu., Chuprakov S.A. Multi-cascade image correction system for the Large solar vacuum telescope // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 597–606. DOI: 10.18287/2412-6179-CO-725.
- Lukin V.P., Botygina N.N., Konyaev P.A., Kulagin O.V., Gorbunov I.A. The combined use of adaptive optics and nonlinear optical wavefront reversal techniques to compensate for turbulent distortions when focusing laser radiation on distant objects // Computer Optics. 2020. V. 44, N 4. P. 519–532. DOI: 10.18287/2412-6179-CO-725.
- Lukin V.P., Botygina N.N., Emaleev O.N., Lavrinov V.V. Peculiarities of adaptive phase correction of optical wave distortions under conditions of "strong" intensity fluctuations // Quantum. Electron. 2020. V. 50, N 9. P. 866–875. DOI: 10.1070/QEL17302.
- Rukosuev A.L., Belousov V.N., Nikitin A.N., Sheldakova Yu.V., Kudryashov A.V., Bogachev V.A., Volkov M.V., Garanin S.G., Starikov F.A. Smart adaptive optical system for correcting the laser wavefront distorted by atmospheric turbulence // Quantum Electron. 2020. V. 50, N 8. P. 707–709. DOI: 10.1070/QEL17382.
- Venediktov V.Yu., Venediktov D.V., Gorelaya A.V., Dmitrieva A.D., Dmitriev D.I., Kudryashov A.V., Lovchij I.L., Cvetkov A.D., Shalymov E.V., Sheldakova Yu.V., Shubenkova E.V. Issledovanie rasprostraneniya i adaptivno-opticheskoj korrekcii lazernogo puchka na izolirovannoj ot vneshnego vozdejstviya atmosfernoj trasse // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 942–948. DOI: 10.15372/AOO20161107.
- Borshevnikov A.N., Dement'ev D.A., Leonov E.V., Lyahov D.M., Sohareva G.N., Chernyh A.V., Shanin Yu.I., Shchipalkin V.I. Upravlenie adaptivnoj opticheskoj sistemoj s deformiruemymi zerkalami nizkogo i vysokogo prostranstvennyh razreshenij // Avtometriya. 2018. V. 54, N 3. P. 119–125. DOI: 10.15372/AUT20180315.
- Lukin V.P., Botygina N.N., Emaleev O.N., Korol'kov V.P., Lavrinova L.N., Nasyrov R.K., Poleshchuk A.G., Cherkashin V.V. Datchik SHeka–Gartmana na osnove rastra nizkoaperturnyh vneosevyh difrakcionnyh linzadaptivnoj opticheskoj sistemoj s deformiruemymi zerkalami nizkogo i vysokogo prostranstvennyh razreshenij // Avtometriya. 2009. V. 45, N 2. P. 88–98.
- Zhiqiang Xu, Shuai Wang, Mengmeng Zhao, Wang Zhao, Lizhi Dong, Xing He, Ping Yang, Bing Xu. Wavefront reconstruction of a Shack–Hartmann sensor with insufficient lenslets based on an extreme learning machine // Appl. Opt. 2020. V. 59, N 16. P. 4768–4774. DOI: 10.1364/AO.388463.
- Vohnsen B., Carmichael M.A., Qaysi S., Sharmin N. Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device machine // Appl. Opt. 2020. V. 57, N 22. P. E199–E204. DOI: 10.1364/AO.57.00E199.
- Aftab M., Choi H., Liang R., Kim D.W. Adaptive Shack–Hartmann wavefront sensor accommodating large wavefront variations // Opt. Express. 2018. V. 26, N 26. P. 34428–34441. DOI: 10.1364/OE.26.034428.
- Zhaoyi Zhu, Quanquan Mu, Dayu Li, Chengliang Yang, Zhaoliang Cao, Lifa Hu, Li Xuan. More Zernike modes’ open-loop measurement in the sub-aperture of the Shack–Hartmann wavefront sensor // Opt. Express. 2016. V. 24, N 21. P. 24611–24623. DOI: 10.1364/OE.24.024611.
- Akondi V., Steven S., Dubra A. Centroid error due to non-uniform lenslet illumination in the Shack–Hartmann wavefront sensor // Opt. Lett. 2019. V. 44, N 17. P. 4167–4170. DOI: 10.1364/OL.44.004167.
- Poleshchuk A.G., Seduhin A.G., Trunov V.I., Maksimov V.G. Datchik Gartmana na osnove mnogoelementnyh amplitudnyh masok s apodizirovannymi aperturami // Komp'yuternaya optika. 2014. V. 38, N 4. P. 695–703.
- Tokovinin A. Lekcii po adaptivnoj optike / per. s angl. V.D. Popova / pod red. A.A. Tokovinina [Elektronnyj resurs]. 2005. URL: http://www.ctio.noao.edu/~atokovin/tutorial/ (data obrashcheniya 17.11.2020).
- Kudryashov A.V., Samarkin V.V., Sheldakova Yu.V., Aleksandrov A.G. Analiz sposoba kompensacii volnovogo fronta pri ispol'zovanii datchika SHeka–Gartmana kak elementa adaptivnoj sistemy // Avtometriya. 2012. V. 48, N 2. P. 52–58.
- Akondi V., Dubra A. Accounting for focal shift in the Shack–Hartmann wavefront sensor // Opt. Lett. 2019. V. 44, N 17. P. 4151–4154. DOI: 10.1364/OL.44.004151.
- Antoshkin L.V., Botygina N.N., Emaleev O.N., Lavrinova L.N., Lukin V.P. Differencial'nyj opticheskij izmeritel' parametrov atmosfernoj turbulentnosti // Optika atmosf. i okeana. 1998. V. 11, N 11. P. 1219–1223.
- Lavrinov V.V., Lavrinova L.N. Chislennyj analiz rekonstrukcii volnovogo fronta v usloviyah vysokointensivnoj atmosfernoj turbulentnosti // Optika atmosf. i okeana. 2020. V. 33, N 2. P. 104–112; Lavrinov V.V., Lavrinova L.N. Numerical analysis of wave-front reconstruction under conditions of high-intensity atmospheric turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 332–339. DOI: 10.1134/S102485602004007.
- Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 211 p.
- Antoshkin L.V., Lavrinov V.V., Lavrinova L.N. Chislennyj analiz evolyucii fazovyh fluktuacij svetovogo polya na vhodnoj aperture adaptivnoj opticheskoj sistemy // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 926–933.
- Shanin O.I. Adaptivnye opticheskie sistemy korrekcii naklonov. Rezonansnaya adaptivnaya optika. M.: Tekhnosfera, 2013. 296 p.
- Noll R.J. Zernike Polynomials and atmosphere turbulence // J. Opt. Soc. Am. 1976. V. 66, N 3. P. 207–211.
- Kucherenko M.A., Lavrinova V.V., Lavrinova L.N. Reconstruction of a wavefront distorted by atmospheric turbulence with account for optical scheme of the telescope // Optoelectronics, Instrumentation and Data Processing. 2019. V. 55, N 6. P. 631–637. DOI: 10.3103/S8756699019060153.
- Lechner D., Zepp A., Eichhorn M., Gładysz S. Adaptable Shack–Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation // Opt. Express. 2020. V. 28, N 24. P. 36188–36205. DOI: 10.1364/OE.410217.
- Lardière O., Conan R., Clare R., Bradley C., Hubin N. Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes // Appl. Opt. 2010. V. 49, N 31. P. G78–G94.