Vol. 34, issue 05, article # 12

Shikhovtsev A. Yu., Lukin V. P., Kovadlo P. G. The development of the adaptive optics systems for the ground-based solar telescopes. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 385–392. DOI: 10.15372/AOO20210512 [in Russian].
Copy the reference to clipboard
Abstract:

The paper describes the multi-conjugate adaptive optics systems and identifies the features of optical conjugations of adaptive mirrors with turbulent layers for ground-based solar telescopes. The optimal size of the field of view for a solar telescope operating under average atmospheric conditions has been calculated. The size of the optimal field of view is equal 10 arc. sec. Recommendations are given for the development of MCAO systems for ground-based solar telescopes. The concept of a system for determination of 3D wavefront distortions for the Large Solar Telescope LST-3, as well as for the wavefront registration in the Large Solar Vacuum Telescope, is proposed.

Keywords:

atmospheric turbulence, wavefront, LST-3, solar images, MCAO

References:

  1. Fried D.L. Anisoplanatism in adaptive optics // J. Opt. Soc. Am. 1980. V. 71, N 1. P. 52–61.
  2. Li R., Luo L., Li J., Gao X. Simulation of anisoplanatic imaging containing optical system parameters through atmospheric turbulence // Optik. 2020. V. 204. P. 164–177.
  3. Bol'basova L.A., Lukin V.P. Modovyj izoplanatizm fazovyh fluktuatsij // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1070–1075.
  4. Berkefeld T., Soltau D., von der Luhe O. Multiconjugate adaptive optics at the Vacuum Tower Telescope, Tenerife // Proc. SPIE. Adapt. Opt. Syst. Technol. II. 2002. V. 4538. DOI: 10.1117/12.459799.
  5. Langlois M., Moretto G., Richards K., Hegwer S, Rimmele T. Solar multi-conjugate adaptive optics at the Dunn Solar Telescope: Preliminary results // Proc. SPIE. Advanc. Adapt. Opt. 2004. V. 5490. DOI: 10.1117/12.548929.
  6. Schmidt D., Gorceix N., Goode P.R., Marino J., Rimmele T., Wöger F., Zhang X., Rigaut F., von der Lühe O. Clear widens the field for observations of the Sun with multi-conjugate adaptive optics // Astron. Astrophys. 2017. V. 597. P. L8.
  7. Zhong L., Zhang L., Shi Z., Tian Y., Guo Y., Kong L., Rao X., Bao H., Zhu L., Rao C. Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging // Astron. Astrophys. 2020. V. 637. P. A99.
  8. Schmidt D., Berkefeld T., Heidecke F., von der Lühe O., Soltau D. Testbed for the multu-conjugate adaptive optics system of the Solar Telescope GREGOR // Proc. SPIE. Astronom. Space Opt. Syst. 2009. V. 74390X. DOI: 10.1117/12.829886.
  9. Soltau D., Berkefeld T., Capuchino J.S., Vera M.C., Moro D.D., Löfdahl M., Scharner G. Adaptive optics and MCAO for the 4-m European Solar Telescope EST // Proc. SPIE. Adapt. Opt. Syst. II. 2010. V. 77360U. DOI: 10.1117/12.856851.
  10. Schmidt D., Beard A., Ferayorni A., Gregory S., Johnson L., Marino J., Rimmele L., Rimmele T. Adding multi-conjugate adaptive optics to the Daniel K. Inouye Solar Telescope // Proc. SPIE. Adapt. Opt. Systems VII. 2020. V. 11448. DOI:10.1117/12.2559606.
  11. Schmidt D., Gorceix N., Marino J., Zhang X., Rimmele T., Berkefeld T., Goode P. Multi-conjugate adaptive optics at Big Bear Solar Observatory // Adapt. Opt. for Extremely Large Telescopes 4. 2015. V. 1, N 1. DOI: 10.20353/K3T4CP1131570.
  12. Rigaut J.R., Ellerbroek B.L., Flicker R. Principles, limitations, and performance of multi-conjugate adaptive optics // Proc. SPIE. Adapt. Opt. Syst. Technol. 2000. V. 4007. DOI: 10.1117/12.390311.
  13. Kovadlo P.G., Lukin V.P., Shihovtsev A.Yu. Razvitie modeli turbulentnoj atmosfery na astroploshchadke Bol'shogo solnechnogo vakuumnogo teleskopa v prilozhenii k adaptatsii izobrazhenij // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 906–910; Kovadlo P.G., Lukin V.P., Shikhovtsev A.Yu. Development of the model of turbulent atmosphere at the Large solar vacuum telescope site as applied to image adaptation // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 202–206.
  14. Townson M.J., Saunter S.D. Reducing the field of view in correlating wavefront sensors for solar adaptive optics // Adaptive Optics for Extremely Large Telescopes 5. 2017. DOI: 10.26698/AO4ELT5.0156.
  15. Grigor'ev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovskij V.I., Chuprakov S.A. Proekt krupnogo solnechnogo teleskopa s diametrom zerkala 3 m // Solnechno-zemnaya fizika. 2020. V. 6, N 2. P. 19–36.
  16. Shikhovtsev A.Yu., Kovadlo P.G., Kiselev A.V. Astroclimatic statistics at the Sayan Solar Observatory // Sol.-Terr. Phys. 2020. V. 6, N 1. P. 102–107.
  17. Antoshkin L.V., Botygina N.N., Bolbasova L.A., Emaleev O.N., Konyaev P.A., Kopylov E.A., Kovadlo P.G., Kolobov D.Yu., Kudryashov A.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Chuprakov S.A., Selin A.A., Shikhovtsev A.Yu. Adaptivnaya opticheskaya sistema dlya solnechnogo teleskopa, obespechivayushchaya ego rabotosposobnost' v usloviyah sil'noj atmosfernoj turbulentnosti // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 895–904; Antoshkin L.V., Botygina N.N., Bolbasova L.A., Emaleev O.N., Konyaev P.A., Kopylov E.A., Kovadlo P.G., Kolobov D.Yu., Kudryashov A.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Chuprakov S.A., Selin A.A., Shikhovtsev A.Yu. Adaptive optics system for solar telescope operating under strong atmospheric turbulence // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 291–299.
  18. Shikhovtsev A.Yu., Chuprakov S.A., Kovadlo P.G. Sensor to register the optical distortions in the wide field of view // Proc. SPIE. 2019. V. 11322. P. 113220B.
  19. Butterley T., Wilson R., Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data // Mon. Not. R. Astron. Soc. 2006. V. 369, N 2. P. 835–845.
  20. Goodwin M., Jenkins C., Lambert A. Improved detection of atmospheric turbulence with SLODAR // Opt. Express. 2007. V. 15, N 22. P. 14844–14860.
  21. Wilson R.W. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2002. V. 337, N 1. P. 103–108.
  22. Shikhovtsev A., Kovadlo P., Lukin V., Nosov V., Kiselev A., Kolobov D., Kopylov E., Shikhovtsev M., Avdeev F. Statistics of the optical turbulence from the micrometeorological measurements at the Baykal astrophysical observatory site // Atmos. 2019. V. 10, N 11. P. 661.
  23. Song T., Cai Z., Liu Y., Zhao M., Fang Y., Zhang X., Wang J.,Li X., Song Q., Du Z. Daytime optical turbulence profiling with a profiler of the differential solar limb // Mon. Not. R. Astron. Soc. 2020. V. 499, N 2. P. 1909–1917.
  24. Wang Z., Zhang L., Kong L., Bao H., Guo Y., Rao X., Zhong L., Zhu L., Rao C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles // Mon. Not. R. Astron. Soc. 2018. V. 478, N 2. P. 1459–1467.
  25. Kovadlo P.G., Shikhovtsev A.Yu., Kopylov E.A., Kiselev A.V., Russkikh I.V. Study of the optical atmospheric distortions using wavefront sensor data // Russ. Phys. J. 2021. DOI: 10.1007/s11182-021-02256-y.
  26. Shikhovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Metod opredeleniya vysot turbulentnyh sloev v atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 994–1000; Shikhovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Method for estimating the altitudes of atmospheric layers with strong turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 295–301.