The height of the zone of intense turbulent heat exchange in the atmospheric boundary layer is analyzed from experimental data obtained with acoustic meteorological lidars (sodars), temperature profilometers, and sonic anemometers/thermometers. The main purpose of the work is to study the turbulent heat exchange under conditions of temperature inversions in the winter season. The results obtained at a territory with natural landscape and an urban territory in January – February 2020 are considered. Part 1 of the work describes the technique used to obtain experimental data and the statistics of temperature inversions in the boundary layer and heights of the layer of intense turbulent heat exchange. The relation of these heights and the corresponding air temperature gradients to the surface values of the wind speed and the vertical turbulent heat flux are analyzed in Part 2.
temperature inversion, atmospheric boundary layer, sodar, temperature profilometer, turbulent heat exchange, sonic anemometer/thermometer
1. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu.I., Mareev E.A. Teoreticheskie modeli vysoty pogranichnogo sloya atmosfery i turbulentnogo vovlecheniya na ego verhnej granitse // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 1. P. 150–160.
2. Dai C., Wang Q., Kalogiros J.A., Lenschow D.H., Gao Z., Zhou M. Determining boundary-layer height from aircraft measurements // Bound.-Lay. Meteorol. 2014. V. 152, N 3. P. 277–302.
3. Kurbatskii A.F., Kurbatskaya L.I. Investigation of a stable boundary layer using an explicit algebraic model of turbulence // Thermophys. Aeromechanics. 2019. V. 26, N 3. P. 335–350.
4. Holdsworth A.M., Monahan A.H. Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget // J. Atmos. Sci. 2019. V. 76, N 5. P. 1307–1327.
5. Shihovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Metod opredeleniya vysot turbulentnyh sloev v atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 12. P. 994–1000; Shikhovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. Method for estimating the altitudes of atmospheric layers with strong turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 295–301.
6. Shihovtsev A.Yu., Kovadlo P.G., Bol'basova L.A., Lukin V.P. Osobennosti formirovaniya naklonov volnovogo fronta na aperture teleskopa pri razlichnyh vertikal'nyh profilyah opticheskoj atmosfernoj turbulentnosti // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 819–823; Shikhovtsev A.Yu., Kovadlo P.G., Bol’basova L.A., Lukin V.P. Features of the formation of wavefront slopes on the telescope aperture at different vertical profiles of optical atmospheric turbulence // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 141–145.
7. Aksenov V.P., Dudorov V.V., Kolosov V.V. Atmosfernaya singulyarnaya optika: ot dislokatsij volnovogo fronta do sinteza vihrevyh lazernyh puchkov // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 792–798; Aksenov V.P., Dudorov V.V., Kolosov V.V. Singular atmospheric optics: From wavefront dislocations to synthesis of vortex laser beams // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 109–115.
8. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Determination of the structure characteristic of refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities // Atmos. 2019. V. 10, iss. 11 (711).
9. Casasanta G., Pietroni I., Petenko I., Argentini S. Observed and modelled convective mixing-layer height at Dome C, Antarctica // Bound.-Lay. Meteorol. 2014. V. 151, N 3. P. 597–609.
10. Petenko I., Argentini S., Casasanta G., Genthon C., Kallistratova M. Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations // Bound.-Lay. Meteorol. 2019. V. 171, N 1. P. 101–128.
11. Van der Linden S.J.A., Edwards J.M., Van Heerwaarden Ch.C., Vignon E., Genthon C., Petenko I., Baas P., Jonker H.J.J., Van de Wiel B.J.H. Large-eddy simulations of the steady wintertime Antarctic boundary layer // Bound.-Lay. Meteorol. 2019. V. 173, N 2. P. 165–192.
12. Kokkalis P., Alexiou D., Papayannis A., Rocadenbosch F., Soupiona O., Raptis P.-I., Mylonaki M., Tzanis C.G., Christodoulakis J. Application and testing of the Extended–Kalman–Filtering technique for determining the planetary boundary-layer height over Athens, Greece // Bound.-Lay. Meteorol. 2020. V. 176, N 1. P. 125–147.
13. Kohanenko G.P., Balin Yu.S., Klemasheva M.G., Penner I.E., Samojlova S.V., Terpugova S.A., Banah V.A., Smaliho I.N., Falits A.V., Rasskazchikova T.M., Antohin P.N., Arshinov M.Yu., Belan B.D., Belan S.B. Struktura aerozol'nyh polej pogranichnogo sloya atmosfery po dannym aerozol'nogo i doplerovskogo lidarov v period prohozhdeniya atmosfernyh frontov // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 679–688; Kokhanenko G.P., Balin Yu.S., Klemasheva M.G., Penner I.E., Samoilova S.V., Terpugova S.A., Banakh V.A., Smalikho I.N., Falits A.V., Rasskazchikova T.M., Antokhin P.N., Arshinov M.Yu., Belan B.D., Belan S.B. Structure of aerosol fields of the atmospheric boundary layer according to aerosol and doppler lidar data during passage of atmospheric fronts // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 18–32.
14. Huang M., Gao Z., Miao S., Chen F., LeMone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using doppler lidar data during SURF-2015 // Bound.-Lay. Meteorol. 2017. V. 162, N 3. P. 503–522.
15. Kamardin A.P., Kohanenko G.P., Nevzorova I.V., Penner I.E. Sovmestnye issledovaniya struktury pogranichnogo sloya atmosfery na osnove lidarnyh i sodarnyh izmerenij // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 534–537.
16. Hemingway B.L., Frazier A.E., Elbing B.R., Jacob J.D. High-resolution estimation and spatial interpolation of temperature structure in the atmospheric boundary layer using a small unmanned aircraft system // Bound.-Lay. Meteorol. 2020. V. 175, N 3. P. 397–416.
17. Baserud L., Reuder J., Jonassen M.O., Bonin T.A., Chilson P.B., Jiménez M.A., Durand P. Potential and limitations in estimating sensible-heat-flux profiles from consecutive temperature profiles using remotely-piloted aircraft systems // Bound.-Lay. Meteorol. 2020. V. 174, N 1. P. 145–177.
18. Balsley B.B., Lawrence D.A., Fritts D.C., Wang L., Wan K., Werne J. Fine structure, instabilities, and turbulence in the lower atmosphere: High-resolution in situ slant-path measurements with the DataHawk UAV and comparisons with numerical modeling // J. Atmos. Ocean. Technol. 2018. V. 35, N 3. P. 619–642.
19. Danchovski V. Summertime urban mixing layer height over Sofia, Bulgaria // Atmos. 2019. V. 10, iss. 1 (36).
20. Kamardin A.P., Gladkih V.A., Odintsov S.L., Fedorov V.A. Meteorologicheskij akusticheskij doplerovskij lokator (sodar) «Volna-4M-ST» // Pribory. 2017. N 4 (202). P. 37–44.
21. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p.
22. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
23. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
24. Kamardin A.P., Odintsov S.L. Vysotnye profili strukturnoj harakteristiki temperatury vozduha v pogranichnom sloe atmosfery po sodarnym izmereniyam // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 709–714; Kamardin A.P., Odintsov S.L. Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 33–38.
25. Odintsov S.L., Gladkih V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Ispol'zovanie rezul'tatov akusticheskoj diagnostiki pogranichnogo sloya atmosfery dlya otsenki vliyaniya turbulentnosti na harakteristiki lazernogo puchka // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1008–1016; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 553–563.
26. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka, 1967. 548 p.
27. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Statistika vneshnih masshtabov turbulentnosti v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 212–220; Gladkikh V.A., Nevzorova I.V., Odintsov S.L. Statistics of outer turbulence scales in the surface air layer // Atmos. Ocean. Opt. 2019. V. 32, N 4. P. 450–458.
28. Odintsov S.L., Gladkih V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Otsenki pokazatelya prelomleniya i regulyarnoj refraktsii opticheskih voln v pogranichnom sloe atmosfery. Part 1. Pokazatel' prelomleniya // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 821–828. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive index // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 437–444.