Vol. 33, issue 08, article # 6

Banakh V. A., Smalikho I. N., Falits A. V. Wind temperature probing in the atmospheric boundary layer in the coastal area of Lake Baikal. I. The Richardson number. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 621-630. DOI: 10.15372/AOO20200806 [in Russian].
Copy the reference to clipboard
Abstract:

The results of experimental studies of the atmospheric boundary layer in the coastal zone of Lake Baikal using a coherent Doppler wind lidar and a temperature profiler are presented. Temporal-altitude distributions of the wind speed, temperature, and the Richardson number are derived. It is found that in the measurement site during all the experiment from August 6 to 23, 2018, day and night the thermal stratification was stable with formation of low-level jets. The temporal-altitude distributions of the Richardson number have layered structure. Layers with Richardson numbers higher than the critical value alternate with layers with the Richardson number lower than the critical value.

Keywords:

atmospheric boundary layer, wind velocity, temperature, remote sensing, Richardson number, stable stratification

References:

  1. Golitsyn G.S. Statistika i dinamika prirodnyh protsessov i yavlenij: Metody, instrumentarij, rezul'taty. M.: KRASAND, 2013. 400 з.
  2. Golitsyn G.S. Zakony sluchajnyh bluzhdanij A.N. Kolmogorova 1934 year // Meteorol. i gidrol. 2018. N 3. PС. 5–15.
  3. Zilitinkevich S.S. Atmosfernaya turbulentnost' i planetarnye pogranichnye sloi. M.: Fizmatlit, 2013. 246 p.
  4. Holtslag A., Svensson G., Baas P., Basu S., Beare B., Beljaars A.C.M., Bosveld F.C., Cuxart J., Lindvall J., Steeneveld G.J., Tjernström M., Van De Wiel B.J.H. Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models // Bull. Am. Meteorol. Soc. 2013. V. 94, N 11. P. 1691–1706. DOI: 10.1175/BAMS-D-11-00187.1
  5. Grachev A.A., Andreas E.L., Fairall C.W., Guest P.S., Persson P.O.G. The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer // Bound.-Lay. Meteorol. 2013. V. 147, iss. 1. P. 51–82. DOI: 10.1007/s10546-012-9771-0.
  6. Liang J.N., Zhang L., Wang Y., Cao X.J., Zhang Q., Wang H. B., Zhang B.D. Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China // J. Geophys. Res. 2014. V. 119, iss. 10. P. 6009–6021. DOI: 10.1002/2014JD021510.
  7. Bonin T., Blumberg W., Klein P., Chilson P. Thermodynamic and turbulence characteristics of the southern great plains nocturnal boundary layer under differing turbulent regimes // Bound.-Lay. Meteorol. 2015. V. 157, iss. 3. P. 401–420. DOI: 10.1007/s10546-015-0072-2.
  8. Optis M., Monahan A., Bosveld F.C. Limitations and breakdown of Monin–Obukhov similarity theory for wind profile extrapolation under stable stratification // Wind Energy. 2016. V. 2016, N 19. P. 1053–1054.
  9. Sun J., Nappo C.J., Mahrt L., Belušić D., Grisogono B., Stauffer D.R., Pulido M., Staquet C., Jiang Q., Pouquet A., Yagüe C., Galperin B., Smith R.B., Finnigan J. J., Mayor S. D., Svensson G., Grachev A.A., Neff W.D. Review of wave turbulence interactions in the stable atmospheric boundary layer // Rev. Geophys. 2015. V. 53. P. 956–993. DOI: 10.1002/2015RG000487.
  10. Sun J., Mahrt L., Nappo C., Lenschow D.H. Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer // J. Atmos. Sci. 2015. V. 72. P. 1484–1503. DOI: 10.1175/JAS-D-14-0129.1.
  11. Hogan R.J., Grant A.L.M., Illingworth A.J., Pearson G.N., O’Connor E.J. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar // Q. J. R. Meteorol. Soc. 2009. V. 135, N 4. P. 635–643.
  12. Barlow J.F., Dunbar T.M., Nemitz E.G., Wood C.R., Gallagher M.W., Davies F., O’Connor E., Harrison R.M. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II // Atmos. Chem. Phys. 2011. V. 11, N 3. P. 2111–2125.
  13. Huang M., Gao Z., Miao S., Chen F., Lemone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015 // Bound.-Lay. Meteorol. 2017. V. 162, N 9. P. 503–522.
  14. Pichugina Y.L., Banta R.M. Stable boundary layer depth from high-resolution measurements of the mean wind profile // J. Appl. Meteorol. Climatol. 2010. V. 49, N 1. P. 20–35.
  15. Bonin T.A., Carroll B.J., Hardesty R.M., Brewer W.A., Hajny K., Salmon O.E., Shepson P.B. Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach // J. Atmos. Ocean. Technol. 2018. V. 35, N 3. P. 915–935.
  16. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  17. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6. P. 3147–3167. DOI: 10.5194/amt-6-3147-2013.
  18. Fuertes F.C., Iungo G.V., Porté-Agel F. 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry // J. Atmos. Ocean. Technol. 2014. V. 31. P. 1549–1556. DOI: 10.1175/JTECH-D-13-00206.1.
  19. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8. P. 729–740. DOI: 10.5194/amt-8-729-2015.
  20. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10. P. 4191–4208. DOI: 10.5194/amt-10-4191-2017.
  21. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692. DOI: 10.1364/OE.25.022679.
  22. Bonin T.A., Choukulkar A., Brewer W.A., Sandberg S.P., Weickmann A.M., Pichugina Y., Banta R.M., Oncley S.P., Wolfe D.E. Evaluation of turbulence measurement techniques from a single Doppler lidar // Atmos. Meas. Tech. 2017. V. 10, iss. 8. P. 3021–3029.
  23. Newman J.F., Clifton A. An error reduction algorithm to improve lidar turbulence estimates for wind energy // Wind Energy Sci. 2017. V. 2. P. 77–95. DOI: 10.5194/wes-2-77-2017.
  24. Banakh V.A., Smalikho I.N. Lidar studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10. P. 1219. DOI: 10.3390/rs10081219.
  25. Bodini N., Lundquist J.K., Newsom R.K. Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign // Atmos. Meas. Tech. 2018. V. 11. P. 4291–4308. DOI: 10.5194/amt-11-4291-2018.
  26. Kallistratova M.A., Kouznetsov R.D. Low-level jets in the Moscow region in summer and winter observed with a sodar network // Bound.-Lay. Meteorol. 2012. V. 143, iss. 1. P. 159–175.
  27. Kallistratova M.A., Kouznetsov R.D., Kramar V.F., Kuznetsov D.D. Profiles of wind speed variances within nocturnal low-level jets observed with a sodar // J. Atmos. Ocean. Technol. 2013. V. 30, N 9. P. 1970–1977.
  28. Newsom R.K., Banta R.M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99 // J. Atmos. Sci. 2003. V. 60, N 1. P. 16–33.
  29. Banta R.M., Newsom R.K., Lundquist J.K., Pichugina Y.L., Coulter R.L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99 // Bound.-Lay. Meteorol. 2002. V. 105, iss. 2. P. 221–252.
  30. Banta R.M., Pichugina Y.L., Newsom R.K. Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer // J. Atmos. Sci. 2003. V. 60, iss. 20. P. 2549–2555.
  31. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63, iss. 11. P. 2700–2719.
  32. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9. P. 5239–5248. DOI: 10.5194/amt-9-1-2016.
  33. Lyulyukin V., Kouznetsov R., Kallistratova M. The composite shape and structure of braid patterns in Kelvin-Helmholtz billows observed with a sodar // J. Atmos. Ocean. Technol. 2013. V. 30, iss. 12. P. 2704–2711.
  34. Kallistratova M.A., Petenko I.V., Kuznetsov R.D., Kulichkov S.N., Chkhetiani O.G., Chunchuzov I.P., Lyulyukin V.S., Zajtseva D.V., Vazaeva N.V., Kuznetsov D.D., Perepelkin V.G., Bush G.A. Sodarnoe zondirovanie atmosfernogo pogranichnogo sloya (Obzor rabot IFA im. A.M. Obuhova RAN) // Izv. RAN. Fiz. atmosf. i okeana. 2018. V. 54, N 3. P. 283–300. DOI: 10.7868/S0003351518030054.
  35. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
  36. Kadygrov E.N., Gan'shin E.V., Miller E.A., Tochilkina T.A. Nazemnye mikrovolnovye temperaturnye profilemery: potentsial i real'nost' // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 521–528; Kadygrov E.N., Ganshin E.V., Miller E.A., Tochilkina T.A. Ground-based microwave temperature profilers: Potential and experimental data // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 598–605.
  37. Miller E.A., Vorob'eva E.A., Kadygrov E.N. Analiz mezhsezonnyh i mezhgodovyh osobennostej temperaturnoj stratifikatsii gorodskogo ostrova tepla // Optika atmosf. i okeana. 2009. V. 22, N 6. P. 552–557; Miller E.A., Vorob’eva E.A., Kadygrov E.N. Analysis of seasonal and annual peculiarities of the temperature stratification of an urban heat island // Atmos. Ocean. Opt. 2009. V. 22, N 4. P. 435–440.
  38. Vorob'eva E.A., Shaposhnikov A.N., Folomeev V.V., Kadygrov E.N. Rezul'taty izmerenij termicheskoj stratifikatsii atmosfernogo pogranichnogo sloya v kan'onah i kotlovinah Guamskogo hrebta // Optika atmosf. i okeana. 2010. V. 23, N 6. P. 505–509.
  39. Ezau I.N., Vol'f T., Miller E.A., Repina I.A., Troitskaya Yu.I., Zilitinkevich S.S. Analiz rezul'tatov distantsionnogo monitoringa profilya temperatury v nizhnih sloyah atmosfery doliny g. Bergen (Norvegiya) // Meteorol. gidrol. 2013. N 10. P. 93–103.
  40. Kadygrov E.N., Gorelik A.G., Miller E.A., Nekrasov V.V., Troitskij A.V., Tochilkina T.A., Shaposhnikov A.N. Rezul'taty monitoringa termodinamicheskogo sostoyaniya troposfery mnogokanal'nym mikrovolnovym radiometricheskim kompleksom // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 459–465.
  41. Gorchakov G.I., Kadygrov E.N., Kunitsyn V.E., Zaharov V.I., Semutnikova E.G., Karpov A.V., Kurbatov G.A., Miller E.A., Sitanskij S.I. Moskovskij ostrov tepla v blokiruyushchem antitsiklone letom 2010 year. // Dokl. AN. 2014. V. 456, N 5. P. 591–595.
  42. Chunchuzov I.P. Nonlinear formation of the three-dimensional spectrum of mesoscale wind velocity and temperature fluctuations in a stably stratified atmosphere // J. Atmos. Sci. 2018. V. 75. P. 3447–3467. DOI: 10.1175/JAS-D-17-0398.1.
  43. Gurvich A.S., Brekhovskikh V.L. Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: A model of scintillation spectra // Waves Random Media. 2001. V. 11. P. 163–181. DOI: 10.1080/13616670109409781.
  44. Gurvich A.S., Kan V. Struktura neodnorodnostej plotnosti v stratosfere po nablyudeniyam mertsanij zvezd iz kosmosa: 1. Model' 3D spektra i rekonstruktsiya ee parametrov. 2. Harakternye masshtaby, strukturnye harakteristiki i dissipatsiya kineticheskoj energii // Izv. RAN. Fiz. atmosf. i okeana.2003. V. 39, N 3. P. 335