Vol. 33, issue 04, article # 4

Astafurov V. G., Skorokhodov A. V., Kuriyanovich K. V., Mitrofanenko Y. K. Parameters of various cloud types over the natural zones of Western Siberia according to MODIS satellite data. // Optika Atmosfery i Okeana. 2020. V. 33. No. 04. P. 266–271. DOI: 10.15372/AOO20200404 [in Russian].
Copy the reference to clipboard
Abstract:

A methodology for studying seasonal variations in cloud parameters over the regions of Western Siberia using satellite data is presented. Five natural zones have been identified: tundra, forest-tundra, bogs, taiga, and forest-steppe. A combined “summer” and “winter” cloud classification has been introduced including 16 and 12 cloud types, respectively. An algorithm based on neural network technologies and fuzzy logic methods is used for cloud image classification. The results of analysis of seasonal variations in some parameters of various cloud types and their repeatability over the considered regions of Western Siberia based on MODIS satellite data for 2017 are discussed. The dependences found for seasonal variability of cloud parameters are in a good agreement with the known literature data that confirms high efficiency of the technique proposed.

Keywords:

Western Siberia, climate, cloud cover, natural areas, seasonal variations, satellite data, cloud parameters

Figures:
References:

1. Quante M. The role of clouds in the climate system // J. Phys. IV France. 2004. V. 121. P. 61–86. 
2. Bony S., Stevens B., Frierson D.M.W., Jakob C., Kageyama M., Pincus R., Shepherd T.G., Sherwood S.C., Siebesma A.P., Sobel A.H., Watanabe M., Webb M.J. Clouds, circulation and climate sensitivity // Nat. Geosci. 2015. V. 8. P. 261–268. 
3. Chernokul'skij A.V. Analiz global'nogo polya oblachnosti i svyazannyh s ego variatsiyami klimaticheskih effektov: dis. kand. fiz.-mat. nauk. Moskva, IFA RAN, 2010. 179 p. 
4. International Satellite Cloud Climatology Project 1982–2010 [Electronic resource] URL: http://isccp. giss.nasa.gov (last access: 1.11.2019).
5. Young A.H., Knapp K.R., Inamdar A., Hankins W., Rossow W.B. The International Satellite Cloud Climatology Project H-Series climate data record product // Earth Syst. Sci. Data. 2018. V. 10. P. 583–593. 
6. Anisimov A.E., Yarovaya D.A., Barabanov V.S. Reanaliz atmosfernoj tsirkulyatsii dlya Chernomorsko-Kaspijskogo regiona // Morskoj gidrofiz. zhurn. 2015. N 4. P. 14–28. 
7. Komarov V.S., Matvienko G.G., Il'in S.N., Lomakina N.Ya. Regional'nye osobennosti dolgoperiodnogo izmeneniya oblachnogo pokrova v Sibirskom sektore Severnogo polushariya za poslednie 45 let (1969–2013 years) // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1079–1084; Komarov V.S., Matvienko G.G., Il’in S.N., Lomakina N.Ya. Regional features of long-term changes in cloud cover in Siberian sector of Northern hemisphere for the last 45 years (1969–2013) // Atmos. Ocean. Opt. 2015. V. 28, N 2. P. 175–179. 
8. Lagutin A.A., Volkov N.V., Mordvin E.Yu., Reznikov A.N. Modelirovanie klimata Zapadnoj Sibiri: rezul'taty modeli RegCM4 // Izv. Altajskogo gos. un-ta. 2012. N 1. Part 1. P. 181–189. 
9. Tolstyh M.A. Global'nye modeli atmosfery: sovremennoe sostoyanie i perspektivy razvitiya // Tr. Gidromettsentra Rossii. 2016. N 1. P. 5–33. 
10. Bespalov D.P., Devyatkin A.M., Dovgalyuk Yu.A., Kondratyuk V.I., Kuleshov Yu.V., Svetlova T.P., Suvorov S.S., Timofeev V.I. Atlas oblakov. SPb.: D’ART, 2011. 248 p. 
11. Mazin I.P., Hrgian A.H. Oblaka i oblachnaya atmosfera. Spravochnik. L.: Gidrometeoizdat, 1989. 647 p. 
12. Zelinka M.D., Klein S.A., Taylor K.E., Andrews T., Webb M.J., Gregory J.M., Forster P.M. Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5 // J. Clim. 2013. V. 26. P. 5007–5027. 
13. Pandit A.K., Gadhavi H.S., Ratnam M.V., Raghunath K., Rao S.V.B., Jayaraman A. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data det over Southern India // Atmos. Chem. Phys. 2015. V. 15. P. 3833–13848. 
14. Wang T., Fetzer E.J., Wong S., Kahn B.H., Yue Q. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications // J. Geophys. Res. 2016. V. 121. P. 11620–11635. 
15. Bukvareva E.N. Rol' nazemnyh ekosistem v regulyatsii klimata i mesto Rossii v postkiotskom protsesse. M.: Tovarishchestvo nauchnyh izdanij KMK, 2010. 97 p. 
16. Astafurov V.G., Skorokhodov A.V., Musienko O.P., Kuriyanovich R.V. Classification of cloudiness from MODIS satellite data using regional statistical models for image texture and physical parameters of cloudiness during periods with snow cover // Proc. SPIE. 2018. V. 10833. DOI: 10.1117/ 12.2504068. 
17. Astafurov V.G., Kur'yanovich K.V., Skorohodov A.V. Statisticheskaya model' tekstury izobrazhenij oblachnogo pokrova po sputnikovym dannym // Meteorol. i gidrol. 2017. N 4. P. 53–66. 
18. Astafurov V.G., Skorohodov A.V. Statisticheskaya model' fizicheskih parametrov oblachnosti na osnove tematicheskih produktov MODIS // Issled. Zemli iz kosmosa. 2017. N 5. P. 66–81. 
19. Skorohodov A.V., Astafurov V.G, Evsyutkin T.V. Primenenie statisticheskih modelej tekstury izobrazhenij i fizicheskih parametrov oblakov dlya ih klassifikatsii na sputnikovyh snimkah MODIS // Issled. Zemli iz kosmosa. 2018. N 4. P. 43–58. 
20. King M.D., Tsay S.-C. Cloud retrieval algorithms for MODIS: Optical thickness, Effective Particle Radius, and Thermodynamic Phase // MODIS Algorithm Theoretical Basis Document. URL: https://modis.gsfc.nasa. gov/data/atbd/atbd_mod05.pdf (last access: 15.01.2020). 
21. Meyer K., Yang Y., Platnick S. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC) // Atmos. Meas. Tech. 2016. V. 9. P. 1785–1797. 
22. Gidrometeorologiya i gidrohimiya morej SSSR. V 10 t. V. 2. Beloe more. Issue 1. Gidrometeorologicheskie usloviya / B.H. Gluhovskoj (red.). L.: Gidrometeoizdat, 1991. 240 p.