We compare the time variations in monthly average concentrations of black carbon in the surface atmospheric layer, obtained from field measurements ([BC]) and from MERRA-2 reanalysis ([BC]M) at four monitoring sites located in the northern part of Russia (Tiksi Hydrometeorological Observatory (HMO), Pechora-Ilych Biosphere Reserve, Alaska (Barrow), and Greenland (Summit). It is shown that the MERRA-2 reanalysis data for the regions of Tiksi HMO and Barrow not fully reflect the [BC] variations during the year, in contrast to the Pechora-Ilych Nature Reserve, where the differences are within 30–50%. The [BC]M reanalysis data for the Summit monitoring site qualitatively agree with the measurement data characterizing the BC content in the free troposphere, but they underestimate [BC] by more than 2 times. In general, the analysis showed that the results of the MERRA-2 reanalysis of the monthly average values of the surface concentration of atmospheric black carbon can be used for climate assessments for hard-to-reach northern regions in the warm season with an error of about 30%. Possible reasons for the differences between [BC] and [BC]M are discussed for different seasons and observation sites.
black carbon, atmospheric surface layer, Arctic; ground-based measurements, MERRA-2 reanalysis
1. Zhang J., Reid J.S., Westphal D.L., Baker N.L., Hyer E.J. A system for operational aerosol optical depth data assimilation over global oceans // J. Geophys. Res. 2008. V. 113. DOI: 10.1029/2007JD009065.
2. Benedetti A., Morsette J.-J., Boucher O., Dethof A., Engelen R.J., Fisher M., Flentje H., Huneeus N., Jones L., Kaiser J.W., Kinne S., Mangold A., Razinger M., Simmons A.J., Suttie M. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation // J. Geophys. Res. 2009. V. 114. DOI: 10.1029/2008JD011115.
3. Lynch P., Reid J.S., Westphal D.L., Zhang J., Hogan T.F., Edward J.H., Curtis C.A., Hegg D.A., Shi Y., Campbell J.R., Rubin J.I., Sessions W.R., Turk F.J., Walker A.L. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences // Geosci. Model Dev. 2016. V. 9, N 4. P. 1489–1522. DOI: 10.5194/gmd-9-1489-2016.
4. Li Z., Zang Z., Li Q.B., Chao Y., Chen D., Ye Z., Liu Y., Liou K.N. A three-dimensional variational data assimilation system for multiple aerosol species with WRF-Chem and an application to PM2.5 prediction // Atmos. Chem. Phys. 2013. V. 13, N 8. P. 4265–4278. DOI: 10.5194/acp-13-4265-2013.
5. Saide P.E., Kim J., Song C.H., Choi M., Cheng Y., Carmichael G.R. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations // Geophys. Res. Lett. 2014. V. 41, N 24. P. 9188–9196. DOI: 10.1002/ 2014GL062089.
6. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) // J. Climate. 2017. V. 30, N 14. P. 5419–5454. DOI: 10.1175/JCLI-D-16-0758.1.
7. Randles C.A., da Silva A. M., Buchard V., Darmenov A., Colarco P.R., Aquila V., Bian H., Nowottnick E.P., Pan X., Smirnov A., Yu H., Govindaraju R. The MERRA-2 Aerosol Assimilation. NASA TM-2016-104606. 2016. V. 45. NASA Global Modeling and Assimilation Office. 132 p. URL: https://gmao. gsfc.nasa.gov/reanalysis/MERRA-2/docs/ (last access: 30.11.2019).
8. Randles C.A., da Silva A.M., Buchard V., Colarco P.R., Darmenov A., Govindaraju R., Smirnov A., Holben B., Ferrare R., Hair J., Shinozuka Y., Flynn C.J. The MERRA-2 aerosol reanalysis, 1980 onward, Part I: System description and data assimilation evaluation // J. Climate. 2017. V. 30, N 17. P. 6823–6850. DOI: 10.1175/JCLI-D-16-0609.1.
9. Buchard V., Randles C.A., da Silva A.M., Darmenov A., Colarco P.R., Govindaraju R., Ferrare R., Hair J., Beyersdorf A.J., Ziemba L.D., Yu H. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies // J. Climate. 2017. V. 30, N 17. P. 6851–6872. DOI: 10.1175/JCLI-D-16-0613.1.
10. Chin M., Ginoux P., Kinne S., Torres O., Holben B.N., Duncan B.N., Martin R.V., Logan J.A., Higurashi A., Nakajima T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements // J. Atmos. Sci. 2002. V. 59, N 3. P. 461–483. DOI: 10.1175/1520-0469(2002)059,0461:TAOTFT.2.0.CO;2.
11. Colarco P., da Silva A., Chin M., Diehl T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth // J. Geophys. Res. 2010. V. 115. DOI: 10.1029/2009JD012820.
12. Hess M.,P. Koepke S.I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844. DOI: 10.1175/1520-0477(1998)079,0831: OPOAAC.2.0.CO;2.
13. Wofsy S.C. The HIPPO science team and cooperating modellers and satellite team HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols // Phil. Trans. Math. Phys. Eng. Sci. 2011. V. 369, N 1943. P. 2073–2086. URL: http://dx.doi. org/10.1098/rsta.2010.0313 (last access: 30.11.2019).
14. Jacob D.J., Crawford J.H., Maring H., Clarke A.D., Dibb J.E., Emmons L.K., Ferrare R.A., Hostetler C.A., Russell P.B., Singh H.B., Thompson A.M., Shaw G.E., McCauley E., Pederson J.R., Fisher J.A. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: Design, execution, and first results // Atmos. Chem. Phys. 2010. V. 10, N 11. P. 5191–5212. URL: http://www.atmos-chem-phys.net/10/5191/2010/ (last access: 10.11.2019).
15. Schmeisser L., Backman J., Ogren J.A., Andrews E., Asmi E., Starkweather S., Uttal T., Fiebig M., Sharma S., Eleftheriadis K., Vratolis S., Bergin M., Tunved P., Jefferson A. Seasonality of aerosol optical properties in the Arctic // Atmos. Chem. Phys. 2018. V. 18, N 16. P. 11599–11622.
16. Vinogradova A.A., Kopejkin V.M., Smirnov N.S., Vasil'eva A.V., Ivanova Yu.A. Chernyj uglerod v prizemnom vozduhe v rajone Pechoro-Ilychskogo zapovednika: izmereniya i istochniki // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 430–436; Vinogradova A.A., Kopeikin V.M., Smirnov N.S., Vasileva A.V., Ivanova Yu.A. Black carbon in near-surface air in Pechora-Ilych nature reserve: Measurements and sources // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 521–527.
17. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinskij I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Hodzher T.V., Huriganova O.I., Chankina O.V., Chernov D.G. Rezul'taty izmerenij fiziko-himicheskih harakteristik atmosfernogo aerozolya na nauchno-issledovatel'skom statsionare «Ledovaya baza “Mys Baranova”» v 2018 year. // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 421–429; Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Measurements of physicochemical characteristics of atmospheric aerosol at research station Ice Base Cape Baranov in 2018 // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 511–520.
18. Chernov D.G., Kozlov V.S., Panchenko M.V., Turchinovich Yu.S., Radionov V.F., Gubin A.B., Prahov A.N. Osobennosti izmenchivosti kontsentratsij aerozolya i sazhi v prizemnom sloe vozduha v Barentsburge (SHpitsbergen) v 2011–2013 years. // Problemy Arktiki i Antarktiki. 2014. N 4 (102). P. 34–44.
19. Popovicheva O.B., Evangeliou N., Eleftheriadis K., Kalogridis A.C., Sitnikov N., Eckhardt S., Stohl A. Black carbon sources constrained by observations in the Russian High Arctic // Environ. Sci. Technol. 2017. V. 51, N 7. P. 3871–3879. DOI: 10.1021/acs.est.6b05832.
20. Popovicheva O., Diapouli E., Makshtas A., Shonija N., Manousakas M., Saraga D., Uttal T., Eleftheriadis K. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi // Sci. Total Environ. 2019. V. 655. P. 924–938. URL: https://doi.org/10.1016/j.scitotenv.2018.11.165 (last access: 30.11.2019).
21. Sakerin S.M., Kabanov D.M., Pol’kin V.V., Golobokova L.P., Zenkova P.N., Kessel A.S., Pol’kin Vas.V., Radionov V.F., Terpugova S.A., Urazgildeeva A.V., Khodzher T.V., Khuriganowa O.I. Features of spatial distribution of aerosol characteristics over Arctic seas // Proc. SPIE. 2018. V. 10833, N 39. DOI: 10.1117/12.2502013.
22. Kirin D.V., Krutikov N.O., Luk'yanov A.N., Strunin A.M., Strunin M.A. Rezul'taty sravnitel'nogo analiza sravneniya aerozol'nyh primesej v atmosfere regionov Arktiki i Moskovskoj oblasti po dannym samoletnyh issledovanij v 2014–2015 years // Tr. Voenno-kosmicheskoj akademii imeni A.F. Mozhajskogo. 2018. Iss. 662. P. 219–223.
23. Sharma S., Ishizawa M., Chan D., Lavoué D., Andrews E., Eleftheriadis K., Maksyutov S. 16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition // J. Geophys. Res.: Atmos. 2013. V. 118, N 1. P. 943–964.
24. Hirdman D., Burkhart J.F., Sodemann H., Eckhardt S., Jefferson A., Quinn P.K., Sharma S., Ström J., Stoh A. Long-term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions // Atmos. Chem. Phys. 2010. V. 10, N 19. P. 9351–9368.
25. Quinn P.K., Shaw G., Andrews E., Dutton E., Ruoho-Airola T., Gong S. Arctic haze: Current trends and knowledge gaps // Tellus В. 2007. V. 59, N 1. P. 99–114.
26. Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V.P., Kopeikin V.M., Novigatsky A.N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions // Atmos. Chem. Phys. 2013. V. 13, N 17. P. 8833–8855.
27. Evangeliou N., Balkanski Y., Hao W.M., Petkov A., Silverstein R.P., Corley R., Nordgren B.L., Urbansk S.P., Eckhardt S., Stohl A., Tunved P., Crepinsek S., Jefferson A., Sharma S., Nøjgaard J.K., Skov H. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013) // Atmos. Chem. Phys. 2016. V. 16. P. 7587–7604.
28. Lisok J., Rozwadowska A., Pedersen J.G., Markowicz K.M., Ritter C., Kaminski J.W., Struzewska J., Mazzola M., Udisti R., Becagli S., Gorecka I. Radiative impact of an extreme Arctic biomass-burning event // Atmos. Chem. Phys. 2018. V. 18, N 12. P. 8829–8848.
29. Stone R., Anderson G., Shettle E., Andrews E., Loukachine K., Dutton E., Schaaf C., Roman M. Radiative impact of boreal smoke in the Arctic: Observed and modeled // J. Geophys. Res.: Atmos. 2008. V. 13, N D14S16. DOI: 10.1029/2007JD009657.
30. Vinogradova A.A., Kopejkin V.M., Smirnov N.S. Monitoring kontsentratsii chernogo ugleroda v prizemnom vozduhe v rajone Pechoro-Ilychskogo biosfernogo zapovednika // Uspekhi sovremennogo estestvoznaniya. 2019. N 11. P. 64–69.
31. Asmi E., Kondratyev V., Brus D., Laurila T., Lihavainen H., Backman J., Vakkari V., Aurela M., Hatakka J., Viisanen Y., Uttal T., Ivakhov V., Makshtas A. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic // Atmos. Chem. Phys. 2016. V. 16, N 3. P. 1271–1287.
32. Vinogradova A.A., Titkova T.B., Ivanova Yu.A. Epizody anomal'no vysokoj kontsentratsii chernogo ugleroda v prizemnom vozduhe v rajone stantsii Tiksi, YAkutiya // Optika atmosf. i okeana. 2018. V. 31, N 10. P. 837–844; Vinogradova A.A., Titkova T.B., Ivanova Yu.A. Episodes with anomalously high black carbon concentration in surface air in the region of Tiksi station, Yakutiya // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 94–102.
33. Vinogradova A.A., Vasil'eva A.V. Chernyj uglerod v vozduhe severnyh rajonov Rossii: istochniki, prostranstvennye i vremennye variatsii // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 467–475; Vinogradova A.A., Vasileva A.V. Black carbon in air over Northern Regions of Russia: Sources and spatiotemporal variations // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 533–541.
34. Vinogradova A.A., Titkova T.B., Vasil'eva A.V., Ivanova Yu.A. Vliyanie letnih prirodnyh pozharov v Rossii na soderzhanie chernogo ugleroda v atmosfere nad arkticheskim poberezh'em Evrazii // Tez. mezhdunar. simpoz. «Atmosfernaya radiatsiya i dinamika» (MSARD-2019) 24–27 june 2019, Sankt-Peterburg, Petrodvorets. P. 134–135. URL: http://www.rrc.phys. spbu.ru/msard19/thesis.pdf (last access: 30.11.2019).
35. Xu Jun-Wei, Martin R.V., Morrow A., Sharma S., Huang L., Leaitch W.R., Burkart J., Schulz H., Zanatta M., Willis M.D., Henze D.K., Lee C.J., Herber A.B., Abbatt J.P.D. Source attribution of Arctic black carbon constrained by aircraft and surface measurements // Atmos. Chem. Phys. 2017. V. 17. P. 11971–11989. URL: https://doi.org/10.5194/acp-17-11971-2017.
36. Dibb J.E. Vertical mixing above Summit, Greenland: Insights into seasonal and high frequency variability from the radionuclide tracers 7Be and 210Pb // Atmos. Environ. 2007. V. 41. P. 5020–5030. URL: https:// doi.org/10.1016/jatmosenv.2006.12.005.
37. Stohl A. Characteristics of atmospheric transport into the Arctic troposphere // J. Geophys. Res. 2006. V. 111. URL: https://doi.org/10.1029/005JD006888 (last access: 30.11.2019).
38. Evangeliou N., Kylling A., Eckhardt S., Myroniuk V., Stebel K., Paugam R., Zibtsev S., Stohl A. Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions // Atmos. Chem. Phys. 2019. V. 19. P. 1393–1411. URL: https://doi.org/10.5194/acp-19-1393-2019.
39. Stohl A., Berg T., Burkhart J.F., Fjaeraa A.M., Forster C., Herber A., Hov O., Lunder C., McMillan W.W., Oltmans S., Shiobara M., Simpson D., Solberg S., Stebel K., Strom J., Torseth K., Treffeisen R., Virkkunen K., Yttri K.E. Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006 // Atmos. Chem. Phys. 2007. V. 7. P. 511–534.