Vol. 33, issue 03, article # 2

Razhev A. M., Churkin D. S., Tkachenko R. A. Pulsed inductive IR Ar I laser. // Optika Atmosfery i Okeana. 2020. V. 33. No. 03. P. 169–172. DOI: 10.15372/AOO20200302 [in Russian].
Copy the reference to clipboard
Abstract:

The results of experimental studies of the influence of pumping conditions on the spectral and temporal characteristics of IR Ar I laser radiation upon excitation of the active medium by a pulsed inductive longitudinal discharge are presented. The lasing was obtained at transitions of neutral argon atoms at wavelengths of 1213, 1240, 1270, 1694, and 1791 nm in pure argon and its mixtures with helium and neon. The optical pulses length was (5 ± 1) ns (FWHM); the radiation energy attained 0.1 mJ.

Keywords:

pulsed longitudinal inductive discharge, IR Ar I laser, generation spectrum, pulse duration

References:

  1. Clark P.O. Investigation of the operating characteristics of the 3.5m xenon laser // IEEE J. Quant. Electron. 1965. V. 1, N 3. P. 109–113.
  2. Jacques S.L., McAuliffe D.J. The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation // Photochem. Photobiol. 1991. V. 53, N 6. P. 769–775.
  3. Vasil'ev B.I., Mannun U.M. IK-lidary differentsial'nogo pogloshcheniya dlya ekologicheskogo monitoringa okruzhayushchej sredy // Kvant. elektron. 2006. V. 36, N 9. P. 801–820.
  4. Andronov A.A., Zaharov N.G., Marugin A.V., Savikin A.P. Novye istochniki i priemniki IK- i teragertsovogo diapazona. Nizhnij Novgorod: NNGU im. Lobachevskogo, 2007. 95 p.
  5. Romanovskii O.A. Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling // Opt. Mem. Neural Networks. 2008. V. 17, N 2. P. 131–137.
  6. Konak A.I., Mel'nikov S.P., Porhaev V.V., Sinyanskij A.A. Generatsiya na IK-perekhodah atomov kriptona i argona pri vozbuzhdenii aktivnyh sred oskolkami deleniya urana // Kvant. elektron. 1995. V. 22, N 6. P. 537–541.
  7. Karelin A.V., Tarasenko V.F., Yakovlenko S.I. High-pressure atom and atomic-ion laser // Laser Phys. 2000. V. 10, N 4. P. 827–844.
  8. Shon J.W., Kushner M.J. Excitation mechanisms and gain modeling of the high-pressure atomic Ar laser in He/Ar mixtures // J. Appl. Phys. 1994. V. 75, N 4. P. 1883–1890.
  9. Dudin A.Yu., Zayarnyj D.A., Semenova L.V., Ustinovskij N.N., Holin I.V., Chugunov A.Yu. Lazery s elektronnopuchkovoj nakachkoj na smesyah Xe, Kr i Ar s dvuhkomponentnymi bufernymi gazami // Kvant. elektron. 1991. V. 21, N 11. P. 1172–1175.
  10. Chapovsky P.L., Lisitsyn V.N., Sorokin A.R. High-pressure gas lasers on Ar I, Xe I, and Kr I transitions // Opt. Commun. 1976. V. 16, N 1. P. 33–36.
  11. Wood O.R., Burkhardt E.G., Pollack M.A., Bridges T.J. High-pressure laser action in 13 gases with transverse excitation // Appl. Phys. Lett. 1971. V. 18, N 4. P. 112–115.
  12. Linford G.J. High-gain neutral laser lines in pulsed noble-gas discharge // IEEE J. Quantum Electron. 1972. V. 8, N 6. P. 477–482.
  13. Razhev A.M., Churkin D.S., Kargopol’tsev E.S. IR lasing on atomic xenon with pumping by longitudinal pulse inductive discharge // Laser Phys. Lett. 2019. V. 12, N 4.
  14. Kazakov V.V., Kazakov V.G., Kovalev V.S., Meshkov O.I., Yatsenko A.S. Electronic structure of atoms: Atomic spectroscopy information system // Phys. Scr. 2017. V. 92, N 10. P. 1–6.
  15. Сорокин А.Р. Механизм импульсной генерации электроразрядного Ar–Хе-лазера высокого давления // Квант. электрон. 1981. V. 8, N 11. P. 2425–2432.
  16. Sorokin A.R. Mekhanizm impul'snoj generatsii elektrorazryadnyh IK-lazerov vysokogo davleniya na smesyah He–Ar, Kr, Xe // Kvant. elektron. 1983. V. 10, N 2. P. 308–318.