Characteristics of the multiple filamentation domain in air are estimated on the basis of the numerical solution of the nonlinear Schrödinger equation in the single filamentation problem statement. The method of diffraction-beam tubes was used to describe the single filamentation of laser pulses. The effectiveness of this method for interpreting experimental results and predicting effects is shown, which is important when planning experiments. The characteristic size of small-scale intensity inhomogeneities in the laser centimeter-radius beam profile, which form a multiple filamentation domain for femtosecond pulses, is shown to be several millimeters. An increase in the original laser beam radius during telescoping increases the sizes of the initial small-scale intensity irregularities, which increases the filamentation start distance. An increase in initial beam power contributes to the elongation of the filaments and increases their number.
femtosecond laser pulses, air, self-focusing, filamentation, diffraction-beam tube
1. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentatsiya moshchnogo femtosekundnogo lazernogo izlucheniya // Kvant. elektron. 2009. V. 39. N 3. P. 205–228.
2. Gejnts Yu.E., Golik S.S., Zemlyanov A.A., Kabanov A.M., Petrov A.V. Mikrostruktura oblasti mnozhestvennoj filamentatsii femtosekundnogo lazernogo izlucheniya v tverdom dielektrike // Kvant. elektron. 2016. V. 46. N 2. P. 133–141.
3. Skupin S., Bergé L., Peschel U., Lederer F., Méjean G., Yu J., Kasparian J., Salmon E., Wolf J.P., Rodriguez M., Wöste L., Bourayou R., Sauerbrey R. Filamentation of femtosecond light pulses in the air: turbulent cells versus long-range clusters // Phys. Rev. E. 2004. V. 70. P. 046602-1–046602-13.
4. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2008. 605 р.
5. Mechain G., D'Amico C., Andre Y.-B., Tzortzakis S., Franco M., Prade B., Mysyrowicz A., Couairon A., Salmon E., Sauerbrey R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser // Opt Commun. 2005. V. 247. P. 171–180.
6. Daigle J.-F. Filamentation in Air: Evolution, Control and Applications. Dis. Ph. D. Quebec, 2012. 132 p.
7. Apeksimov D.V., Bukin O.A., Golik S.S., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B., Khoroshaeva E.E. Prostranstvennye kharakteristiki oblasti filamentatsii gigavattnykh lazernykh impul'sov pri ikh razlichnoj fokusirovke na atmosfernoj trasse // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1042–1046.
8. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K. Filamentatsiya teravattnykh lazernykh impul'sov na stometrovoj atmosfernoj trasse // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 274–277; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Filamentation of terawatt laser pulses along hundred-meter atmospheric paths // Atmospheric and Oceanic Optics. 2015. V. 28, N 4. Р. 372–375.
9. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Mnozhestvennaya filamentatsiya lazernykh puchkov razlichnogo diametra v vozdukhe na trasse dlinoj 150 m // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 51–55; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Multiple filamentation of laser beams of different diameters in air along a 150-meter path // Atmos. Ocean. Opt. 2016. V. 29, N 3. Р. 263–266.
10. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Global'naya samofokusirovka i osobennosti mnozhestvennoj filamentatsii izlucheniya subteravattnogo titan-sapfirovogo lazera s santimetrovym diametrom vykhodnoj apertury na 150-metrovoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 727–732; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V. Global Self-focusing and features of multiple filamentation of radiation of a subterawatt Ti:Sapphire Laser with a centimeter output aperture along a 150-m path // Atmos. Ocea. Opt. 2018. V. 31, N 1. Р. 31–35.
11. Berge L., Skupin S., Lederer F., Mejean G., Yu J., Kasparian J., Salmon E., Wolf J.P., Rodriguez M., Wöste L., Bourayou R., Sauerbrey R. Multiple filamentation of terawatt laser pulses in air // Phys. Rev. Let. 2004. V. 92, N 22. P. 225002.1–225002.4.
12. Fibich G., Eisenmann S., Ilan B.,Erlich Y., Fraenkel M., Zohar Henis Z., Gaeta A., Zigler A. Self-focusing distance of very high power laser pulses // Opt. Exp. 2005. V. 13. iss. 15. P. 5897–5903.
13. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E. Difraktsionnaya optika svetovogo filamenta, obrazovannogo pri samofokusirovke femtosekundnogo lazernogo impul'sa v vozdukhe // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 839–847; Zemlyanov A.A., Bulygin A.D., Geints Yu.E. Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air // Atmospheric and Oceanic Optics. 2012. V. 25, N 2. Р. 97–105.
14. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E. Energeticheskie svetovye struktury pri filamentatsii femtosekundnogo lazernogo izlucheniya v vozdukhe. K 50-letiyu pervoj publikatsii o samofokusirovke sveta // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 350–362; Zemlyanov A.A., Bulygin A.D., Geints Yu.E. Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing // Atmospheric and Oceanic Optics. 2014. V. 27, N 4. Р. 463–474.
15. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: I. Formalizm difraktsionnykh luchej i svetovykh trubok // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 364–371; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: I–Formalism of diffraction beams and light tubes // Atmospheric and Oceanic Optics. 2018. V. 31, N 6. Р. 611–618.
16. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: II. Difraktsionno-luchevaya kartina filamentatsii lazernogo impul'sa // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 515–522; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: II–Diffraction-beam pattern of laser pulse filamentation // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 619–625.
17. Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Lokalizovannye svetovye struktury s vysokoj intensivnost'yu pri mnozhestvennoj filamentatsii femtosekundnogo impul'sa titan-sapfirovogo lazera na vozdushnoj trasse // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 910–914; Apeksimov D.V., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Oshlakov V.K., Petrov A.V., Sokolova E.B. Localized high-intensity light structures during multiple filamentation of Ti:Sapphire laser femtosecond pulses along an air path // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 107–111.
18. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Modelirovanie samofokusirovki femtosekundnykh lazernykh impul'sov v vozdukhe metodom difraktsionnykh luchej i svetovykh trubok // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 120–130.
19. Apeksimov D.V., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Filamentatsiya femtosekundnykh lazernykh impul'sov v vozdukhe / pod red. prof. A.A. Zemlyanova. Tomsk: Izd-vo Instituta optiki atmosfery SO RAN, 2017. 162 p.