Vol. 32, issue 02, article # 2

Starikov V. I. Line broadening and line shift of water vapor and carbon oxide in the volume of aerogel nanopores. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 96–104. DOI: 10.15372/AOO20190202 [in Russian].
Copy the reference to clipboard
Abstract:

Calculations of line broadening and line shift of water vapor and carbon oxide confined in nanoporous media are presented. The collisions of free H2O (CO) molecules with physically adsorbed on the surface molecules are discussed. Changes in the rotational structure of levels in physically adsorbed molecules are taken into account. The comparison with the existing experimental data is performed.

Keywords:

water vapor, carbon oxide, nanopores, halfwidth and shift of spectral lines

References:

    1.    Wagner P.E., Somers R.M., Jenkins J.L. Line broadening and relaxation of three microwave transitions in ammonia by wall and intermolecular collisions // J. Phys. B. 1981. V. 14, iss. 24. P. 4763–4770.
   2. Luijendijk S.C.M. The Effect of Wall Collisions on the shape of microwave absorption lines // J. Phys. B. 1975. V. 8, iss. 18. P. 2995–3000.
   3. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, iss. 25. P. 26062–26067.
   4. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, iss. 16. P. 16460–16473.
   5. Hartmann J.-M., Boulet C., Vander Auwera J., El Hamzaoui H., Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule-wall to molecule–molecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
   6. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87, iss. 3. P. 032510-1–10.
   7. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, iss. 2. P. 147–154.
   8. Lugina N.E., Starikov V.I. Ushirenie kolebatel'no-vrashchatel'nyh linij pogloshcheniya molekul uglekislogo i ugarnogo gazov vsledstvie soudarenij so stenkami // Izv. vuzov. Fizika. 2012. V. 55, N 6. P. 657–663.
   9. Solodov A.M., Petrova  T.M., Ponomarev Yu.N., Solodov A.A., Starikov V.I. Fur'e-spektroskopiya vodyanogo para, nahodyashchegosya v ob"eme nanopor aerogelya: izmereniya i raschety // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 378–386; Solodov A.M., Petrova T.M., Ponomarev Yu.N., Solodov A.A., Starikov V.I. Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 1. Measurements and calculations // Atmos. Ocean. Opt. 2014. V. 27, N 5. P. 372–380.
10. Solodov A.M., Petrova T.M., Solodov A.A., Starikov V.I. Fur'e-spektroskopiya vodyanogo para, nahodyashchegosya v ob"eme nanopor aerogelya. Part 2: Raschet ushirenij linij i sdviga spektral'nyh linij pri stolknoveniyah s adsorbirovannymi molekulami // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 32–36; Solodov A.M., Pеtrovа Т.М., Solodov A.A., Stаrikov V.I. Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 2. Calculation of broadening and shift of spectral lines by adsorbed molecules // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 232–235.
11. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the relaxation dependence of line half-width for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
12. Starikov V.I., Solodov A.A. Ushirenie linij okisi ugleroda v ob"eme nanopor aerogelya // Optika atmosf. i okeana. 2017. V. 30, № 4. P. 269–273; Starikov V.I., Solodov A.A. Line broadening of carbon oxide in the volume of aerogel nanopores // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 417–421.
13. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73, N 11. P. 5432–5450.
14. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. de Physique. 1979. V. 40, iss. 10. P. 923–943.
15. Starikov V.I., Lavrent'eva N.N. Stolknovitel'noe ushirenie spektral'nyh linij pogloshcheniya molekul atmosfernyh gazov. Tomsk: Izd-vo IOA SO RAN, 2006. 303 p.
16. Radtsig A.A., Smirnov B.M. Spravochnik po atomnoj i molekulyarnoj fizike. M.: Atomizdat, 1980. 240 p.
17. Maroulis G. Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects // Chem. Phys. Lett. 1998. V. 289. P. 403–411.
18. Aktsipetrov O.A. Gigantskie nelinejno-opticheskie yavleniya na poverhnosti metallov // Sorosovskij obrazovatel'nyj zhurnal. 2001. V. 7, N 7. P. 109–116.
19. Polubotko A.M., Chelibanov V.P. Teoriya poverhnostno usilennogo giperkombinatsionnogo rasseyaniya (obzor) // Optika i spektroskopiya. 2016. V. 120, N 1. P. 99–123.
20. Tauns Ch., Shavlov A. Radiospektroskopiya. M.: Izd-vo inostr. lit., 1959. 757 p.
21. Andreev S.N., Makarov V.P., Tichonov V.I., Volkov A.A. Ortho and para molecules of water in electric field // Phys. Chem-Ph. 2007. V. 1. P. 1–4.
22. Kiselev A.V., Lygin V.I. Infrakrasnye spektry poverhnostnyh soedinenij. M.: Nauka, 1972. 439 p.
23. Linsen B.G. Physical and chemical aspects of adsorbents and catalysts. London–New-York: Academic Press, 1970. 650 p.
24. Bykov A.D., Sinitsa L.N., Starikov V.I. Eksperimental'nye i teoreticheskie metody v spektroskopii vodyanogo para. Novosibirsk: Izd-vo SO RAN, 1999. 376 p.