Vol. 31, issue 08, article # 3

Banakh V. A., Gerasimova L. O., Zaloznaya I. V., Falits A. V. Amplification of the lidar signal in a turbulent atmosphere under the conditions of strong optical scintillations. // Optika Atmosfery i Okeana. 2018. V. 31. No. 08. P. 609–615. DOI: 10.15372/AOO20180803 [in Russian].
Copy the reference to clipboard
Abstract:

Experimental data on the lidar signal amplification in a turbulent atmosphere in dependence on the structural constant of the turbulent fluctuations of the air refractive index are presented. It is established that as the refractive index structural constant increases, the amplification coefficient increases first, reaching a maximum, then decreases under the conditions of strong optical scintillations at a sounding path. The maximum of the amplification coefficient that is attainable at a given distance depends on the refractive index turbulence strength at the instant of measurement. The temporal variations in the backscatter amplification coefficient are in good agreement with the temporal changes in the magnitude of the refractive index structural constant, determined from independent measurements.

Keywords:

optical turbulence, lidar, backscattering amplification

References:

    1. Belen'kij M.S., Mironov V.L. Lazernyj metod opredeleniya parametra turbulentnosti C2n osnovannyj na rasseyanii sveta atmosfernym aerozolem // Izv. vuz. Radiofiz. 1981. V. 24, N 3. P. 298–302.
   2. Belen'kij M.S., Makarov A.A., Mironov V.L., Pokasov V.V. Lidarnye izmereniya strukturnoj harakteristiki atmosfernoj turbulentnosti // Izv. AN SSSR. Fiz. atmosf. i okeana. 1984. V. 20, N 4. P. 314–317.
   3. Belen'kij M.S., Boronoev V.V., Gomboev N.Ts., Mironov V.L. Opticheskoe zondirovanie atmosfernoj turbulentnosti. Novosibirsk: Nauka, 1986. 92 p.
   4. Zilbermen A., Kopeika N.S. Lidar measurements of atmospheric turbulence profiles // Proc. SPIE. XVI Free Space Laser Commun. Technol. Bellingham: Washington, 2004. V. 5338. P. 288–297.
   5. Lidar: Pat. na poleznuyu model' 116245. Rossiya, MPK8, G 01 S 17/88, Gurvich A.S.; Uchrezhdenie Rossijskoj akademii nauk Institut fiziki atmosfery im. A.M. Obuhova RAN; N 2011150933/28, Zayavl. 15.12.2011; Opubl. 20.05.2012, Byul. N 14.
   6. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
   7. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuz. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
   8. Afanas'ev A.L., Gurvich A.S., Rostov A.P. Eksperimental'noe issledovanie effekta usileniya obratnogo rasseyaniya v turbulentnoj atmosfere // XVIII Mezhdunar. simpozium. Optika atmosf. i okeana. Fiz. atmosf. 2–6 july 2012. Irkutsk, Elektronnaya versiya dokladov. P. C95–C99.
   9. Banah V.A., Razenkov I.A., Smaliho I.N. Aerozol'nyj lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. I. Komp'yuternoe modelirovanie // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 5–11.
10. Banah V.A., Razenkov I.A., Smaliho I.N. Aerozol'nyj lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. II. Konstruktsiya i eksperiment // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 113–119.
11. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo atmosfernogo rasseyaniya // Optika i spektroskopiya. 2016. V. 120, N 1. P. 339–348.
12. Banakh V.A., Razenkov I.A. Refractive turbulence strength estimation based on the laser echo signal amplification effect // Opt. Lett. 2016. V. 41, N 19. P. 4429–4432.
13. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
14. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II –results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
15. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48.
16. Afanas'ev A.L., Banah V.A., Marakasov D.A., Rostov A.P. Poligonnye ispytaniya passivnogo opticheskogo izmeritelya strukturnoj harakteristiki pokazatelya prelomleniya [Elektronnyj resurs] // Optika atmosf. i okeana. Fiz. atmosf.: materialy XXIII Mezhdunar. simpoziuma. Tomsk: Izd-vo IOA SO RAN, 2017. P. B118–B121. 1 CD-ROM.
17. Banah V.A., Gerasimova L.O. Usilenie srednej moshchnosti obratnogo rasseyannogo ploskim zerkalom izlucheniya v rezhime sil'noj opticheskoj turbulentnosti [Elektronnyj resurs] // Optika atmosf. i okeana. Fiz. atmosfery: materialy XXIX Mezhdunar. simp. Tomsk: Izd-vo IOA SO RAN, 2018. 1 CD-ROM.
18. Banah V.A. Usilenie srednej moshchnosti obratno rasseyannogo v atmosfere izlucheniya v rezhime sil'noj opticheskoj turbulentnosti // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 857–862; Banakh V.A. Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 90–95.