Abstract:
Parametric statistical models of the image textures and physical parameters of cloudiness over various natural regions of the Russian Federation during snow cover are presented. The cloud texture description is based on the GLCM, GLDV, SADH, and OSDH methods of statistical approach to describing the texture of their images in the visible spectral range (0.62–0.67 μm). The probability densities and estimates of their parameters are found. They describe the fluctuations in the physical parameters of the clouds and the texture features of their images, determined from MODIS satellite data. The most repetitive cloud types during periods of snow cover are given. The comparative analysis results of statistical cloud models for various natural regions and cloud models over snow-covered territory and a snow-free surface are discussed. The variability of characteristic values of texture features and physical parameters of clouds observed over different natural regions of the Russian Federation is noted.
Keywords:
climate, cloudiness, snow cover, satellite data, statistical model, texture features, physical parameters
References:
- Choi H., Bindschadler R. Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision // Remote Sens. Environ. 2004. V. 92. P. 237–242.
- Chen G., Dongchen E. Support vector machines for cloud detection over ice-snow areas // Geo Spat. Inf. Sci. 2007. V. 10. P. 117–120.
- Hall D.K., Riggs G.A., Salomonson V.V. Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data // Remote Sens. Environ. 1995. V. 54. P. 127–140.
- Chernokul'skij A.V., Mohov I.I. Sravnitel'nyj analiz harakteristik global'noj i zonal'noj oblachnosti po razlichnym sputnikovym i nazemnym nablyudeniyam // Issled. Zemli iz kosmosa. 2010. N 3. P. 12–29.
- Tolmacheva N.I., Ermakova L.N. Issledovanie parametrov oblachnosti i yavlenij po dannym sputnikovogo i radiolokatsionnogo zondirovaniya // Geograf. vestn. Meteorologiya. 2011. N 3. P. 59–68.
- Astafurov V.G., Kur'yanovich K.V., Skorohodov A.V. Statisticheskaya model' tekstury izobrazhenij oblachnogo pokrova po sputnikovym dannym // Meteorol. i gidrol. 2017. N 4. P. 53–66.
- Astafurov V.G., Skorohodov A.V. Statisticheskaya model' fizicheskih parametrov oblachnosti na osnove tematicheskih produktov MODIS // Issled. Zemli iz kosmosa. 2017. N 5. P. 66–81.
- Oblaka i oblachnaya atmosfera: spravochnik / pod red. I.P. Mazina, A.H. Hrgiana. L.: Gidrometeoizdat, 1989. 647 p.
- Astafurov V.G., Kur'yanovich K.V., Skorohodov A.V. Metody avtomaticheskoj klassifikatsii oblachnosti po sputnikovym snimkam MODIS // Issled. Zemli iz kosmosa. 2016. N 4. P. 35–45.
- Bankert R.L., Mitrescu C., Miller S.W., Wade R.H. Comparison of GOES cloud classification algorithms employing explicit and implicit physics // J. Appl. Meteor. Climatol. 2009. V. 48. P. 1411–1421.
- Liu Y., Xia J., Shi C.-X., Hong Y. An improved cloud classification algorithm for China’s FY-2C multi-channel images using artificial neural network // Sensors. 2009. V. 9. P. 5558–5579.
- Jin W., Gong F., Zeng X., Fu R. Classification of clouds in satellite imagery using adaptive fuzzy sparse representation // Sensors. 2016. V. 16. P. 2153. DOI:10.3390/s16122153.
- Lemeshko B.YU. Neparametricheskie kriterii soglasiya. Rukovodstvo po primeneniyu. M.: INFRA-M, 2014. 163 p.
- Safonova T.V. Aviatsionnaya meteorologiya. Ul'yanovsk: UVAU GA, 2005. 215 p.
- Pozdnyakova V.A. Prakticheskaya aviatsionnaya meteorologiya: ucheb. posobie. Ekaterinburg: Ural'skij UTTS GA, 2010. 113 p.
- Astafurov V.G., Evsyutkin T.V., Kur'yanovich K.V., Skorohodov A.V. Klassifikatsiya tekstur osnovnyh tipov oblachnosti po dannym MODIS s pomoshch'yu nechetkih sistem // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. V. 14, N 5. P. 9–18.