Vol. 31, issue 05, article # 3

Aksenov V. P., Dudorov V. V., Kolosov V. V. Probability distribution of strong intensity fluctuations of vortex laser beams in the turbulent atmosphere. // Optika Atmosfery i Okeana. 2018. V. 31. No. 05. P. 349–354. DOI: 10.15372/AOO20180503 [in Russian].
Copy the reference to clipboard
Abstract:

Numerical experiment is used to study the distribution laws of intensity fluctuations of laser beams propagating in the atmosphere. The probability density functions of intensity of fundamental Gaussian beam and beam having an orbital angular momentum (vortex beam) are compared for different positions of the observation point in a cross plane. An analytical model is suggested for the probability density function of intensity fluctuations, which works well for the conditions of strong (when the variance of intensity fluctuations takes the highest values) and saturated intensity fluctuations.

Keywords:

vortex beam, turbulent atmosphere, intensity fluctuations, probability density functions

References:

  1. Flatté S.M., Bracher C., Wang G. Probability density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation // J. Opt. Soc. Am. A. 1994. V. 11. P. 2080–2092.
  2. Hill R.J., Frehlich R.G. Probability distribution of irradiance for the onset of strong scintillation // J. Opt. Soc. Am. A. 1997. V. 14. P. 1530–1540.
  3. Churnside J.H., Frehlich R.G. Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere // J. Opt. Soc. Am. A. 1989. V. 6. P. 1760–1766.
  4. Andrews L.C., Phillips R.L. Laser beam propagation through random media // SPIE Press. 2005. Р. 42–45.
  5. Churnside J.H., Hill R.J. Probability density of irradiance scintillations for strong path-integrated refractive turbulence // J. Opt. Soc. Am. A. 1987. V. 4. P. 727–733.
  6. Lyke S.D., Voelz D.G., Roggemann M.C. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links // Appl. Opt. 2009. V. 48. P. 6511–6527.
  7. Mclaren J.R.W., Thomas J.C., Mackintosh J.L., Mudge K.A., Grant K.J., Clare B.A., Cowley W.G. Comparison of probability density functions for analyzing irradiance statistics due to atmospheric turbulence // Appl. Opt. 2012. V. 51. P. 5996–6002.
  8. Barrios R., Dios F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves // Opt. Express. 2012. V. 20. P. 13055–13064.
  9. Vetelino F.S., Young C., Andrews L. Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence // Appl. Opt. 2007. V. 46. P. 3780–3790.
  10. Lachinova S.L., Vorontsov M.A. Giant irradiance spikes in laser beam propagation in volume turbulence: Analysis and impact // J. Opt. 2016. V. 18. P. 025608.
  11. Andrews D.L. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. Amsterdam: Academic press, 2008. 341 p.
  12. Yao A.M., Padgett M.J. Orbital angular momentum: origins, behavior and applications // Adv. Opt. Photonics. 2011. V. 3. P. 161–204.
  13. Aksenov V.P., Dudorov V.V., Kolosov V.V. Osobennosti vihrevyh puchkov, sformirovannyh matricej volokonnyh lazerov, i ih rasprostranenie v turbulentnoj atmosfere // Kvant. jelektron. 2016. V. 46, N 8. P. 726–732.
  14. Aksenov V.P., Kolosov V.V. Scintillations of optical vortex in randomly inhomogeneous medium // Photonics. Res. 2015. V. 3, N 2. P. 44–47.
  15. Aksenov V.P., Dudorov V.V., Kolosov V.V. Statistical characteristics of common and synthesized vortex beams in a turbulent atmosphere // Proc. SPIE. 2016. V. 10035. Р. 100352Р.
  16. Korn G., Korn T. Spravochnik po matematike dlja nauchnyh rabotnikov i inzhenerov. M.: Nauka, 1984. 832 p.
  17. Gudimetla V.S.R., Holmes J.F. Probability density function of the intensity for a laser-generated speckle field after propagation through the turbulent atmosphere // J. Opt. Soc. Am. 1982. V. 72. P. 1213–1218.
  18. Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Pt. 2. Sluchajnye polja. M.: Nauka, 1978. 463 p.
  19. Fleck J.A., Morris J.R., Feit M.D. Time-dependent propagation of high-energy laser beams through the atmosphere // Appl. Phys. 1976. V. 10. P. 129–160.
  20. Konyaev P.A., Lukin V.P. Thermal distortions of focused laser beams in the atmosphere // Appl. Opt. 1985. V. 24. P. 415–421.
  21. Martin J.M., Flatté S.M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media // Appl. Opt. 1988. V. 27. P. 2111–2126.
  22. Van der Vaart A.W. Asymptotic statistics. Cambridge: Cambridge Univ. Press, 1998. 265 p.
  23. Al-Habash M.A., Andrews L.C., Phillips R.L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media // Opt. Eng. 2001. V. 40. P. 1554–1562.
  24. Gochelashvili K.S., Shishov V.I. Volny v sluchajno neodnorodnyh sredah // Itogi nauki i tehniki. Radio-fizika. Fizicheskie osnovy jelektroniki. Akustika. M.: VINITI, 1981. V. 1. 144 p.
  25. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 227 p.
  26. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. L.: Gidrometeoizdat, 1988. 270 p.