Abstract:
The interaction of iron oxide nanoparticles obtained in acoustoplasma discharge with cavitation with blood plasma fibrinogen is studied in a model solution by dynamic light scattering. Depending on the storage time of the nanoparticles, their interaction with the protein shows different dynamics of the size distribution. However, the biological action of the nanoparticles is the same action regardless of the storage time—they act as inhibitors of the fibrin gel formation reaction.
Keywords:
iron oxide nanoparticles, acoustoplasma discharge with cavitation, blood plasma fibrinogen, dynamic light scattering, fibrin gel formation
References:
- Ilinskaya A., Dobrovolskaia M. Nanoparticles and the blood coagulation system. Part I: Benefits of nanotechnology // Nanomedicine. 2013. V. 8, N 5. P. 773–784.
- Ilinskaya A., Dobrovolskaia M. Nanoparticles and the blood coagulation system. Part II: Safety concerns // Nanomedicine. 2013. V. 8, N 6. P. 969–981.
- Bychkova A.V., Sorokina O.N., Kovarskii A.L., Leonova V.B., Rozenfel'd M.A. Interaction between blood plasma proteins and magnetite nanoparticles // Colloid J. 2010. V. 72, N 5. P. 696–702.
- Zhang H., Wu P., Zhu Z., Wang Y. Interaction of g-Fe2O3 nanoparticles with fibrinogen // Spectrochim. Acta A. 2015. N 151. P. 40–47.
- Canoa P., Simon-Vazquez R., Popplewell J., Gonzalez-Fernandez A. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance // Biosens. Bioelectron. 2015. N 74. P. 376–383.
- Bulychev N.A., Kazarjan M.A., Chajkov L.L., Burhanov I.S., Krasovskij V.I. Nanorazmernye chasticy oksidov metallov, poluchennye v plazmennom razrjade v zhidkoj faze pod dejstviem ul'trazvukovoj kavitacii 1. Metod poluchenija chastic. // Kratkie soobshhenija po fizike FIAN. 2014. V. 41, N 9. P. 33–39; Bulychev N.A., Kazaryan M.A., Chaikov L.L., Burkhanov I.S., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles // Bull. Lebedev Phys. Inst. 2014. V. 41, N 9. P. 264–268.
- Burhanov I.S., Chajkov L.L., Bulychev N.A., Kazarjan M.A., Krasovskij V.I. Nanorazmernye chasticy oksidov metallov, poluchennye v plazmennom razrjade v zhidkoj faze pod dejstviem ul'trazvukovoj kavitacii 2. Razmery i ustojchivost'. Issledovanie metodom DRS // Kratkie soobshhenija po fizike FIAN. 2014. V. 41, N 10. P. 39–49; Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Sizes and stability. Dynamic light scattering study // Bull. Lebedev Phys. Inst. 2014. V. 41, N 10. P. 297–304.
- Bulychev N.A., Kazarjan M.A., Gridneva E.S., Murav'ev Je.N., Solinov V.F., Koshelev K.K., Kosheleva O.K., Sachkov V.I., Chen S.G. Plazmennyj razrjad s ob#emnym svecheniem v zhidkoj faze pod dejstviem ul'trazvuka // Kratkie soobshhenija po fizike FIAN. 2012. V. 39, N 7. P. 39–49; Bulychev N.A., Kazaryan M.A., Gridneva E.S., Murav’ev E.N., Solinov V.F., Koshelev K.K., Kosheleva O.K., Sachkov V.I., Chen S.G. Plasma discharge with bulk glow in the liquid phase exposed to ultrasound // Bull. Lebedev Phys. Inst. 2012. V. 39, N 7. P. 214–220.
- Kovalenko K.V., Krivohizha S.V., Masalov A.V., Chajkov L.L. Izmerenie razmerov chastic metodom korreljacionnoj spektroskopii s pomoshh'ju svetovodnogo shhupa // Kratkie soobshhenija po fizike FIAN. 2009. N 4. P. 3–17; Kovalenko K.V., Krivokhizha S.V., Masalov A.V., Chaikov L.L. Correlation spectroscopy measurements of particle size using an optical fiber probe // Bull. Lebedev Phys. Inst. 2009. V. 36, N 4. P. 95–103.
- Kirichenko M.N., Krivokhiza S.V., Chaikov L.L., Bulychev N.N. The influence of the sequence of nanoparticles injection to solution on the rate of fibrinogen-thrombin reaction // J. Phys.: Conf. Ser. 2017. V. 784, N 1. P. 012025–012031.
- Fischer N.O., McIntosh C.M., Simard J.M., Rotello V.M. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors // Proc. Natl. Acad. Sci. of the USA. 2002. V. 99, N 8. P. 5018–5023.