Abstract:
An analytical approximation of outgoing radiation spectra at the top of the cloudless atmosphere in the visible and near infrared spectral regions and a method for atmospheric correction, which is based on the former, are suggested. The parameterization of the contributions of individual radiation components and a quite simple optical model of the atmosphere are used for derivation of analytical formulas. The optical model of the atmosphere includes several (5–7) parameters that are essential in terms of the effect on the radiation transfer. There is no need in a priori information about atmosphere or Earth’s surface parameters in this method. In order to determine unknown parameters of the model by solving an inverse problem with an analytical objective function, only the data to be corrected (images) with the number of spectral channels no less than the number of unknown parameters are used. The method developed is primarily intended for the correction of hyperspectral or multispectral images, which are made along with measurements of the spectra of individual spatial zones in the images (a spectrometer which operates simultaneously with the imaging system). The approximation suggested is highly accurate, which was checked in numerous calculations of outgoing radiation spectra with the use of software for the solution of the direct problem of radiation transfer.
Keywords:
remote sensing, hyperspectral images, spectrum of outgoing radiation, parameterization, optical model of atmosphere, atmospheric correction
References:
- Eismann M. Hyperspectral Remote Sensing. SPIE Press, 2012. 725 p.
- Zagolski F., Gastellu-Etchegorry J.P. Atmospheric corrections of AVIRIS images with a procedure based on the inversion of the 5S model // Int. J. Remote Sens. 1995. V. 16, N 16. P. 3115–3146.
- Leprieur C., Carrere V., Gu X.F. Atmospheric corrections and ground reflectance recovery for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data: MAC Europe'91 // Photogram. Eng. Remote Sens. 1995. V. 61, N 10. P. 1233–1238.
- Shovengert R.A. Distancionnoe zondirovanie. Modeli i metody obrabotki izobrazhenij. M.: Tehnosfera, 2010. 560 p.
- Miller C.J. Performance assessment of ACORN atmospheric correction algorithm // SPIE. 2002. V. 4725. P. 438–449.
- Richter R., Schlapfer D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction // Int. J. Remote Sens. 2002. V. 23, N 13. P. 2631–2649.
- Gao B.-C., Heidebrecht K.B., Goetz A.F.H. Derivation of scaled surface reflectances from AVIRIS data // Remote Sens. Environ. 1993. N 44. P. 165–178.
- Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.Y., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Feldeb G., Gardner J., Hokeb M., Jeong L.S., Pukall B., Mello J., Ratkowski A., Burke H.H. Atmospheric correction for short-wave spectral imagery based on MODTRAN4 // SPIE. 1999. V. 3753. P. 61–69.
- Matthew M.W., Adler-Golden S.M., Berk A., Richtsmeier S.C., Levine R.Y., Bernstein L.S., Acharya P.K., Anderson G.P., Felde G.W., Hoke M.P., Ratkowski A., Burke H.-H., Kaiser R.D., Miller D.P. Status of atmospheric correction using a MODTRAN4-based algorithm // SPIE. 2000. V. 4049. P. 199–207.
- Goetz A.F.H., Kindel B.C., Ferri M., Qu Z. HATCH: Results from simulated radiances, AVIRIS and Hyperion // IEEE Trans. Geosci. Remote Sens. 2003. V. 6. N 41. P. 1215–1222.
- Qu Z., Kindel B.C., Goetz A.F.H. The high accuracy atmospheric correction for hyperspectral data (HATCH) model // IEEE Trans. Geosci. Remote Sens. 2003. V. 6, N 41. P. 1223–1231.
- Montes M.J., Gao B.-C., Davis C.O. Tafkaa atmospheric correction of hyperspectral data // SPIE. 2003. V. 5159. P. 188–197.
- Shunlin L., Hongliang F., Mingzhen C. Atmospheric Correction of Landsat ETM+ Land Surface Imagery – Part I: Methods // IEEE Trans. Geosci. Remote Sens. 2001. V. 39, N 11. P. 2490–2498.
- Richter R., Schläpfer D., Müller A. An automatic atmospheric correction algorithm for visible/NIR imagery // Int. J. Remote Sen. 2006. V. 27, N 10. P. 2077–2085.
- Handbook of Optics. Volume 5. Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optic / 3rd ed., ed. by M. Bass et al. N. Y. 2010. 1280 p.
- URL: http://cloudsgate2.larc. nasa.gov/jin/coart.html (дата обращения 6.04.2016).
- Jin Z., Charlock Thomas P., Rutledge K., Stamnes K., Wang Y. Analytical solution of radiative transfer in the coupled atmosphere–ocean system with a rough surface // Appl. Opt. 2006. V. 45, N 28. P. 7443–7455.
- Ginzburg A.S., Romanov S.V., Fomin B.A. Ispol'zovanie radiacionno-konvektivnoj modeli dlja ocenki temperaturnogo potenciala parnikovyh gazov // Izv. RAN. Fiz. atmosf. i okeana. 2008. V. 44, N 3. P. 324–331.
- Ginzburg A.S., Mel'nikova I.N., Samulenkov D.A., Sapunov M.V., Katkovskij L.V. Prostaja opticheskaja model' bezoblachnoj i oblachnoj atmosfery dlja rascheta potokov solnechnoj radiacii [Jelektronnyj resurs]. URL: https://www.researchgate.net/publication/ 290993526/ (data obrashhenija 6.04.2016).
- Beljaev B.I., Beljaev M.Ju., Desinov L.V., Katkovskij L.V., Sarmin Je.Je. Obrabotka spektrov i izobrazhenij s fotospektral'noj sistemy v kosmicheskom jeksperimente «Uragan» na MKS // Issled. Zemli iz kosmosa. 2014. N 6. P. 54–65.
- Beljaev B.I., Katkovskij L.V. Opticheskoe distancionnoe zondirovanie. Minsk: BGU, 2006. 455 p.
- Vasil'ev A.V., Kuznecov A.D., Mel'nikova I. Distancionnoe zondirovanie okruzhajushhej sredy iz kosmosa: Praktikum, SPb.: Balt. gos. tehn. un-t., 2008. 133 p.
- Minin I.N. Priblizhennye formuly dlja raschetov pogloshhenija korotkovolnovogo izluchenija v bezoblachnoj atmosfere // Izv. AN. Fiz. atmosf. i okeana. 1984. V. 20, N 10. P. 999–1001.
- Beljaev B.I., Beljaev M.Ju., Desinov L.V., Katkovskij L.V., Krot Ju.A., Sarmin Je.Je. Rezul'taty ispytanij fotospektral'noj sistemy na MKS // Issled. Zemli iz kosmosa. 2014. N 6. P. 27–39.
- Kokhanovsky A.A., Mayer B., Rozanov V.V. A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems // Atmos. Res. 2005. N 73. P. 37–43.
- Vasil'ev A.V., Kuznecov A.D., Mel'nikova I.N. Approksimacija mnogokratno rassejannogo solnechnogo izluchenija v ramkah priblizhenija odnokratnogo rassejanija // Int. Symp. «Atmospheric Radiation and Dynamics» (ISARD 2015), Saint-Petersburg-Petrodvorets, June 23–26, 2015. P. 131.