Vol. 29, issue 07, article # 9

Dagurov P. N., Dmitriev A. V., Dobrynin S. I., Zakharov A. I., Chimitdorzhiev T. N. Radar interferometry of the soil’s seasonal deformations and the phase model of backscattering of microwaves by a two-layer medium with rough boundaries. // Optika Atmosfery i Okeana. 2016. V. 29. No. 07. P. 585-591. DOI: 10.15372/AOO20160709 [in Russian].
Copy the reference to clipboard
Abstract:

The results of satellite differential radar interferometry in L-band (wavelength is 23 cm) are shown for the vertical land movement estimation due to seasonal deformations. A comparison was performed between results of radar interferometric measurements and field geodetic data. It was found that in winter, the discrepancy between interferometric and geodetic measurements does not exceed 1 cm, and in summer, when the moisture of topsoil changes, the discrepancy reaches 2–2.7 cm. The phase model of backscattering of microwaves by a two-layer soil with rough boundaries is proposed to assess the observed phase residuals. The model allows us to estimate the phase of backscattering wave. It is based on the ray approach and the assumption of small irregularities of the boundaries. The results of numerical calculations show that the layered structure of the earth's cover can cause a noticeable variation in the phase of backscattering wave.

Keywords:

radar interferometry, deformation of soil, backscattering of microwaves, layered soil, wave phase

References:

  1. Richards J.A. Remote Sensing with Imaging Radar. Berlin, Heidelberg: Springer-Verlag, 2009. 361 p.
  2. Ferretti A., Savio G., Barzaghi R., Borghi A. Submillimeter accuracy of InSAR time series: Experimental validation // IEEE Trans. Geosci. Remote Sens. 2007. V. 45, N 5. P. 1142–1153.
  3. Fielding E.J., Blom R.G., Goldstein R.M. Rapid subsidence over oil fields measured by SAR interferometry // Geophys. Res. Lett. 1998. V. 25, N 17. P. 3215–3218.
  4. Zaharov A.I., Tugarinov P.V. Issledovanie dinamiki ledovyh pokrovov poberezh'ja Antarktidy po dannym interferometricheskoj s#emki RSA «Almaz-1» // Radiotehnika. 1998. N 12. P. 63–67.
  5. Kucherjavenkova I.L., Zaharov A.I. Primenenie radarnoj interferometrii dlja issledovanija dinamiki zemnyh pokrovov i troposfery // Issled. Zemli iz kosmosa. 2002. N 3. P. 35–43.
  6. Hooper A., Bekaert D., Spaans K., Arikan M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation // Tectonophys. 2012. V. 514–517, N 1. P. 1–13.
  7. Kumar V., Venkataramana G., Hogda K.A. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas // J. Appl. Earth Observ. Geoinform. 2011. V. 13, N 4. P. 545–551.
  8. Bianchini S., Pratesi F., Nolesini T., Casagli N. Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide-Affected Area: The Volterra (Italy) Case Study // Remote Sens. 2015. V 7, N 4. P. 4678–4701.
  9. Hallikainen M.T., Ulaby F.T., Dobson M.C. Microwave Dielectric Behavior of Wet Soil – Part I: Empirical Models and Experimental Observations // IEEE Trans. Geosci. Remote Sens. 1985. V. 23, N 1. P. 25–34.
  10. Dagurov P.N., Dmitriev A.V., Dymbrylov Zh.B., Chimitdorzhiev T.N. Vlijanie sloistoj struktury vlazhnosti pochvy na rabotu interferometricheskih radiolokatorov s sintezirovannoj aperturoj // Izv. vuzov. Fiz. 2012. V. 55, N 8/2. P. 266–267.
  11. Dagurov P.N., Dmitriev A.V., Chimitdorzhiev T.N., Bazarov A.V., Baltuhaev A.K., Dymbrylov Zh.B. Variacii amplitudy i fazy kojefficienta otrazhenija mikrovoln ot vlazhno-sloistoj pochvy // Vestn. SibGAU. 2013. Issue 5(51). P. 117–120.
  12. Tabatabaeenejad A., Moghaddam M. Bistatic scattering from three-dimensional layered rough surfaces // IEEE Trans. Geosci. Remote Sens. 2006. V. 44, N 8. P. 2102–2114.
  13. Bahar E., Zhang Y. A new unified full wave approach to evaluate the scatter cross sections of composite random rough surfaces // IEEE Trans. Geosci. Remote Sens. 1996. V. 34, N 4. P. 973–980.
  14. Armand N.A. Rassejanie radiovoln ot sloja s sherohovatymi granicami // Radiotehn. i jelektron. 1995. V. 40, N 3. P. 358–367.
  15. Berginc G., Bourrely C. The small-slope approximation method applied to a three-dimensional slab with rough boundaries // Progr. Electromagn. Res. 2007. V. 73. P. 131–211.
  16. Lasne Y., Paillou P., August-Bernex T., Ruffié G., Grandjean G. A Phase Signature for Detecting Wet Subsurface Structures Using Polarimetric L-Band SAR // IEEE Trans. Geosci. Remote Sens. 2004. V. 42, N 8. P. 1683–1684.
  17. Ulaby F.T., Moore R.K., Fung A.K. Microwave Remote Sensing: Active and Passive. V. II. Dedham, MA: Artech House. 1982. 624 p.