Abstract:
Laser parameters in Не–Ar(Kr, Xe)–F2 and He–F2 gas mixtures under pumping by runaway electron preionized diffuse discharge (REP DD) are studied. It is shown that the REP DD can be a source of efficient laser emission on XeF* and KrF* molecules. Laser action on transitions of molecular fluorine in the VUV range at 157 nm was obtained in REP DD for the first time. It was shown that high uniformity of REP DD allows one to increase laser pulse duration on rare gas fluoride molecules. Laser parameters obtained in the REP DD are comparable with those obtained under pumping by commonly used transverse discharges with preionization.
Keywords:
rare gas fluoride lasers, diffuse volume discharge, efficient lasing
References:
- Heaps W.S., Burris J. Airborne Raman lidar // Appl. Opt. 1996. V. 35, N 36. P. 7128–7135.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Jeksperimental'naja ocenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Experimental estimation of Raman lidar sensitivity in the middle UV // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 320–325.
- Burlakov V.D., Dolgij S.I., Nevzorov A.A., Nevzorov A.V., Romanovskij O.A., Harchenko O.V. Lidarnoe zondirovanie ozona v verhnej troposfere – nizhnej stratosfere: metodika i rezul'taty izmerenij // Izv. Tom. politehn. un-ta. Inzhiniring georesursov. 2015. V. 326, N 9. P. 124–132.
- Nabiev Sh.Sh. Sovremennye tendencii razvitija metodov distancionnogo obnaruzhenija radioaktivnyh i vysokotoksichnyh veshhestv // Vestn. Rossijskoj akademii estestvennyh nauk. 2012. N 1. P. 14–25.
- Bobrovnikov S.M., Vorozhtsov А.B., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Sakovich G.V. Lidar detection the vapor of explosives in the atmosphere // Russ. Phys. J. 2015. V. 58, N 9. P. 14–21.
- Kuscner M.J. Microarcs as a termination mechanism of optical pulses in electric-discharge-excited KrF excimer laser // IEEE Trans. Plasma Sci. 1991. V. 19, N 2. P. 387–399.
- Mathew D., Bastiaens H.M.J., Boller K.J., Peters P.J.M. Current filamentation in discharge-excited F2-based excimer laser gas mixtures // Appl. Phys. Lett. 2006. V. 88, N 10. P. 101502.
- Vil'tovskij P.O., Lomaev M.I., Panchenko A.N., Panchenko N.A., Rybka D.V., Tarasenko V.F. Generacija v UF, IK i vidimoj oblastjah spektra v diffuznom razrjade, formiruemom ubegajushhimi jelektronami lavin // Kvant. jelektron. 2013. V. 43, N 7. P. 605–609.
- Lomaev M.I., Panchenko A.N., Panchenko N.A. Spektral'nye harakteristiki izluchenija necepnyh HF(DF)-lazerov s nakachkoj ob#emnym razrjadom // Optika atmosf. i okeana. 2014. V. 27, N 4. P. 341–345; Lomaev M.I., Panchenko A.N., Panchenko N.A. Spectral parameters of nonchain volume-discharge HF(DF) laser radiation // Atmos. Ocean. Opt. 2014. V. 27, N 4. P. 339–343.
- Mesyats G.A., Korovin S.D., Rostov V.V., Shpak V.G., Yalandin M.I. The RADAN series of compact pulsed power generators and their applications // Proc. IEEE. 2004. V. 92, N 7. P. 1166–1179.
- Kumagai H., Obara M. Output energy enhancement of discharge-pumped XeF(B ® X) lasers with the two-component halogen donor mixtures // IEEE J. Quantum Electron. 1989. V. 25, N 8. P. 1874–1878.
- Mandl A., Slater R., Appel H.C. Selective removal of F2 impurity from NF3/Xe/Ne, XeF laser mixtures // Rev. Sci. Instrum. 1982. V. 53, N 3. P. 301–305.
- Eden J.G., Waynant R.W. Collisional deactivation studies of the XeF* (B) state by He, Xe, NF3, and F2 // J. Chem. Phys. 1978. V. 68, N 6. P. 2850–2854.
- Onkels E.D., Seelig W. Real time measurement of current and voltage in discharge pumped KrF* excimer lasers // Rev. Sci. Instrum. 1997. V. 68, N 8. P. 3250–3251.
- Borisov V.M., Bragin I.E., Vinokhodov A.Yu., Vodchits V.A. Pumping rate of electric-discharge excimer lasers // Quantum Electron. 1995. V. 25, N 6. P. 507–510.
- Fizicheskaja jenciklopedija. V. 5 / Gl. red. A.M. Prohorov. M.: Bol'shaja Rossijskaja jenciklopedija, 1998. P. 365.