Vol. 29, issue 01, article # 1

Vasilenko I. A., Naumenko O. V., Kalinin K. V., Bykov A. D. Modeling of the rotation-vibration energy levels of the D218O, HD18O, D217O and HD17O molecules by the method of effective Hamiltonian. // Optika Atmosfery i Okeana. 2016. V. 29. No. 01. P. 5-13. DOI: 10.15372/AOO20160101 [in Russian].
Copy the reference to clipboard
Abstract:

Modeling of the rotation-vibration energy levels of the first and second triads as well as the first and second hexads of the D218O, HD18O, D217O, and HD17O molecules is performed based of the Watson-type Hamiltonian and the rotation operator written through the Padé–Borel approximants. Rotational, centrifugal distortion and resonance constants as well as mixing coefficients of the resulting wave functions are determined. The scheme of resonance interactions is established. The predictive ability of the effective Hamiltonian parameters obtained is examined in the far extrapolation on rotational quantum numbers.

Keywords:

deuterium substituted isotopologues of water vapor, vibration-rotation spectra, modeling of the energy levels, the effective rotational Hamiltonian

References:

  1. Partridge H., Schwenke D.W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 1997. V. 106, N 11. P. 4618–4639.
  2. Polyansky O.L. One-Dimensional Approximation of the Effective Rotational Hamiltonian of the Ground State of the Water Molecule // J. Mol. Spectrosc. 1985. V. 112, N 1. P. 79–87.
  3. Bykov A.D., Naumenko O.V., Sinitsa L.N., Voronin B.A., Winnewisser B.P. The 3v2 band of D216O // J. Mol. Spectrosc. 2000. V. 199. P. 158–165.
  4. Mikhailenko S.N., Mellau G.Ch., Starikova E.N., Tashkun S.A., Tyuterev Vl.G. Analysis of the first triad of interacting states (020), (100), and (001) of D216O from hot emission spectra // J. Mol. Spectrosc. 2005. V. 233. P. 32–59.
  5. Mellau G.Ch., Mikhailenko S.N., Starikova E.N., Tashkun S.A., Over H., Tyuterev Vl.G. Rotational levels of the (000) and (010) states of D2O from hot emission spectra in the 320–860 cm–1 region // J. Mol. Spectrosc. 2004. V. 224. P. 32–60.
  6. Burenin A.V. Optimum rational perturbation theory series when treating rotational spectra of nonlinear molecules // J. Mol. Spectrosc. 1990. V. 140, N 1. P. 54–61.
  7. Coudert L.H. Analysis of the Rotational Levels of Water and Determination of the Potential Energy Function for the Bending ν2 Mode // J. Mol. Spectrosc. 1994. V. 165, N 2. P. 406–425.
  8. Lanquetin R., Coudert L.H., Camy-Peyret C. High-Lying Rotational Levels of Water: An Analysis of Energy Levels of the Five First Vibrationl States // J. Mol. Spectrosc. 2001. V. 206, N 1. P. 83–103.
  9. Pickett H.M., Pearson J.C., Miller C.E. Use of Euler series to fit spectra with application to water // J. Mol. Spectrosc. 2005. V. 233, N 2. P. 174–179.
  10. Tashkun S.A., Putilova T.A. Vrashhatel'naja struktura kolebatel'nyh sostojanij 000, 010, 100, 020 i 001 molekuly D216O: spektroskopicheskaja identifikacija do J, Ka = 30 i analiz opublikovannyh dannyh // Optika i spektroskopija. 2009. V. 107, N 5. P. 726–735.
  11. Ulenikov O., Onopenko G., Koivusaari M., Alanko S., Anttila R. High Resolution Vibrational-Rotational Spectrum of H2S in the Region of the 2 Fundamental Band // J. Mol. Spectrosc. 1996. V. 176, N 2. P. 236–250.
  12. Bykov A.D., Naumenko O.V., Polovtseva E.R., Hu S.-M., Liu A.-W. Fourier Transform Absorption Spectrum of D218O in 7360–8440 cm–1 region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2197–2210.
  13. Czako G., Matyus E., Csaszar A.G. Bridging Theory with Experiment: A Benchmark Study of Thermally Averaged Structural and Effective Spectroscopic Parameters of the Water Molecule // J. Phys. Chem. 2009. V. 113, N 43. P. 11665–11678.
  14. Ulenikov O.N., He S.-G., Onopenko G.A., Bekhtereva E.S., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. High-Resolution Study of the (v1 + 12v2 + v3 = 3) Polyad of Strongly Interacting Vibrational Bands of D2O // J. Mol. Spectrosc. 2000. V. 204, N 2. P. 216–225.
  15. He S.-G., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. High-Resolution Fourier Transform Spectrum of the D2O Molecule in the Region of the Second Triad of Interacting Vibrational States // J. Mol. Spectrosc. 2000. V. 200, N 1. P. 34–39.
  16. Wang X.-H., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., He S.-G., Hu S.-M., Lin H., Zhu Q.-S. High-Resolution Study of the First Hexad of D2O // J. Mol. Spectrosc. 2000. V. 200, N 1. P. 25–33.
  17. Ormsby P.S., Rao K.N., Winnewisser M., Winnewisser B.P., Naumenko O.V., Bykov A.D., Sinitsa L.N. The 3v2+v3, v1+v2+v3, v1+3v2, 2v1+v2 and v2+3v3 Bands of D216O // J. Mol. Spectrosc. 1993. V. 158. P. 109–130.
  18. Hu S.M., Ulenikov O.N., Bekhtereva E.S., Onopenko G.A., He Sheng-Gui, Lin Hai, Cheng Ji-Xin, Zhu Qing-Shi. High-Resolution Fourier-Transform Intracavity Laser Absorption Spectroscopy of D2O in the Region of the 4ν1 + ν3 Band // J. Mol. Spectrosc. 2002. V. 212, N 1. P. 89–95.
  19. Ulenikov O.N., Hu S.M., Bekhtereva E.S., Onopenko G.A., He S.G., Wang X.H., Zheng J.J., Zhu Q.S. High Resolution Fourier Transforg Spectrum of D2O in the Region Near 0.97 // J. Mol. Spectrosc. 2001. V. 210. P. 18–27.
  20. Zheng J.J., Ulenikov O.N., Onopenko G.A., Bekhte-reva E.S., He S.G., Wang X.H., Hu S.M., Lin H., Zhu Q.S. High Resolution Vibration-Rotation Spectrum of the D2O Molecule in the Region Near the 2u + u2 + Absorption Band // Mol. Phys. 2001. V. 99. P. 931–937.
  21. Liu An-Wen, Song Ke-Feng, Ni Hong-Yu, Hu Shui-Ming, Naumenko O.V., Vasilenko I.A., Mikhailenko S.N. (0 0 0) and (0 1 0) energy levels of the HD18O and D218O molecules from analysis of their ν2 bands // J. Mol. Spectrosc. 2011. V. 265, N 1. P. 26–38.
  22. Ni H.-Y., Liu A.-W., Song K.-F., Hu S.-M., Naumenko O.V., Kruglova T.V., Tashkun S.A. High-resolution spectroscopy of the triple-substituted isotopologue of water molecule D218O: The first triad // Mol. Phys. 2008. V. 106. P. 1793–1801.
  23. Liu A.-W., Naumenko O.V., Kassi S., Campargue A. CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 138. P. 97–106.
  24. Mikhailenko S.N., Naumenko O.V., Nikitin A.V., Vasilenko I.A., Liu A.-W., Song K.-F., Ni H.-Y., Hu S.-M. Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm−1 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 9. P. 653–669.
  25. Perrin A., Flaud J.-M., Camy-Peyret C. Calculated energy levels and intensities for the ν1 and 2ν2 bands of HDO // J. Mol. Spectrosc. 1985. V. 112, N 1. P. 153–162.
  26. Ohshima T., Sasada H. DFB semiconductor laser spectroscopy of 1.5-deuterated water // J. Mol. Spectrosc. 1989. V. 136, N 2. P. 250–263.
  27. Ulenikov O.N., Hu S., Bekhtereva E.S., Onopenko G.A., Wang X., He S., Zheng J., Zhu Q. High-resolution fourier transform spectrum of HDO in the region 6140–7040 cm–l // J. Mol. Spectrosc. 2001. V. 208, N 2. P. 224–235.
  28. Bykov A.D., Voronin B.A., Naumenko O.V., Petrova T.M., Sinica L.N. Spektroskopicheskie postojannye sostojanij (011), (200), (120) i (040) molekuly HD16O // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 819–824.
  29. Hu S., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., He S., Wang X., Lin H., Zhu Q. High-resolution study of strongly interacting vibrational bands of HDO in the region 7600–8100 cm–1 // J. Mol. Spectrosc. 2000. V. 203. P. 228–234.
  30. URL: http://spectra.iao.ru
  31. Toth R.A. HD16O, HD18O and HD17O transition frequencies and strengths in the u2 bands // J. Mol. Spectrosc. 1993. V. 62. P. 20–40.
  32. Toth Robert A. HDO and D2O Low Pressure, Long Path Spectra in the 600–3100 cm−1 Region: II. D2O Line Positions and Strengths // J. Mol. Spectrosc. 1999. V. 195, N 1. P. 98–122.