Abstract:
The water vapour continuum absorption (or continuum) has a special importance for radiation balance of the Earth. In this paper one of the poorly studied spectral regions of the continuum absorption 8500–12500 cm–1 (1.17–0.8 μm) is investigated, focusing on two absorption bands of water vapour. The continuum was derived from experimental pure water vapour absorption spectra obtained using a high resolution Fourier transform spectrometer. Measurements were carried out at elevated temperatures (from 398 to 471 K) and pressures (from 1 to 5 atm). Well-pronounced spectral absorption peaks were found within absorption bands, that are absent in the widely used MT_CKD model. Estimation of the total dimerization equilibrium constant for stable and metastable dimers, derived by fitting a simulated water dimer spectrum to the experimental continuum at 400 K, amounted of 0.028 atm–1, which is twice higher than the modern ab initio prediction of this value.
Keywords:
continuum absorption, water vapour, absorption bands, MT_CKD continuum model
References:
- Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Р. 535–555.
- Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2520–2556. DOI: 10.1098/rsta.2011.0295.
- Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: Evidence for water dimmers // Quant. J. Roy. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
- Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808-1–L12808-5.
- Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
- Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. P. D16305-1–D16305-16.
- Shillings A.J., Ball S.M., Barber M.J., Tennyson J., Jones R.L. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. V. 10. P. 23345–23380.
- Micel' A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Jeffektivnyj metod polinejnogo scheta propuskanija pogloshhajushhej atmosfery // Optika atmosf. i okeana. 1995. V. 8, N 10. P. 1547–1551.
- Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly interacting molecular pairs: Unconventional absorbers of radiation in the atmosphere / Ed. by C. Camy-Peyret, A.A. Vigasin. Boston; Dordrecht; London: Kluwer Academic Publishers, 2003. Р. 23–47.
- Kjaergaard H.G., Garden A.L., Chaban G.M., Gerber R.B., Matthews D.A., Stanton J.F. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
- Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimmers // J. Chem. Phys. 2010. V. 132. P. 014304-1–014304-7.
- Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water dimers in atmosphere III; equilibrium constant from flexible potential // J. Phys. Chem. A. 2006. V. 110. P. 5411–5419.
- Serov E.A., Koshelev M.A., Odintsova T.A., Parshin V.V., Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range // Phys. Chem. Chem. Phys. 2014. V. 16, N 47. P. 26221–26233.