Vol. 28, issue 08, article # 1

Dudaryonok A. S., Lavrentieva N. N., Ma Q. Averaged energy difference method of calculation of asymmetric top line broadening. // Optika Atmosfery i Okeana. 2015. V. 28. No. 08. P. 675-681. DOI: 10.15372/AOO20150801 [in Russian].
Copy the reference to clipboard
Abstract:

The new method of calculation of rotation-vibration line broadening of asymmetric tops is proposed. The application of this method allows one to obtain the linewidths having been based on some empirical data without complicated calculations. Using experimental data a vibrational dependence of averaged energy difference is deduced. The approach was used for calculation of H2O and HDO lines broadening. Comparisons of the theoretical line shape parameters with the experimental values in different absorption bands are made.

Keywords:

the averaged energy difference method, collisional transition, line broadening coefficient

References:

  1. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. 1979. V. 40, iss. 10. P. 923–943.
  2. Ma Q., Tipping R.H., Boulet C. Modification of the Robert–Bonamy formalism in calculating Lorentzian half-widths and shifts // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 103, iss. 3. P. 588–596.
  3. Bykov A., Lavrentieva N., Sinitsa L. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, iss. 14–15. P. 1653–1658.
  4. Starikov V.I., Protasevich A.E. Analiticheskoe predstavlenie dlja kojefficientov samoushirenija vodjanogo para // Optika i spektroskopija. 2005. V. 98, N 3. P. 368–373.
  5. Drouin B.J., Gamache R.R. Temperature dependent air-broadened linewidths of ozone rotational transition // J. Mol. Spectrosc. 2008. V. 251, iss. 1–2. P. 194–202.
  6. Bykov A.D., Makushkin Ju.S., Ulenikov O.N. Kolebatel'no-vrashhatel'naja spektroskopija vodjanogo para. Novosibirsk: Nauka, 1989. 296 p.
  7. Bykov A.D., Lavrent'eva N.N. Vychislenie rezonansnyh funkcij v udarnoj teorii ushirenija i sdviga spektral'nyh linij // Optika atmosf. i okeana. 1991. V. 4, N 7. P. 718–724.
  8. Hodges J.T., Lisak D., Lavrentieva N., Bykov A., Sinitsa L., Tennyson J., Barber R.J., Tolchenov R.N. Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra // J. Mol. Spectrosc. 2008. V. 249, iss. 2. P. 86–94.
  9. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gama-che R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Pereva-lov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Šimečková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
  10. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94, iss. 9. P. 5883–5890.
  11. Flygare W.H., Benson R.C. The molecular Zeeman effect in diamagnetic molecules and the determination of molecular magnetic moments (g values), magnetic susceptibilities, and molecular quadrupole moments // Mol. Phys. 1971. V. 20, iss. 2. P. 225–250.
  12. Gamache R., Hartmann J.-M. Collisional parameters of H2O lines effects of vibration // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, iss. 2. P. 119–147.
  13. Toth R.A. Air- and N2-broadening parameters of water vapor: 604 to 2271 cm–1 // J. Mol. Spectrosc. 2000. V. 201, iss. 2. P. 218–243.
  14. Gamache R.R., Mandin J.Y., Chevillard J.P., Camy-Peyret C., Flaud J.M. N2-broadening coefficients of H216O lines between 9500 and 11500 cm–1 // J. Mol. Spectrosc. 1989. V. 138, iss. 1. P. 272–281.
  15. Grossmann B.E., Browell E.V. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138, iss. 2. P. 562–595.
  16. Mandin J.Y., Chevillard J.P., Camy-Peyret C., Flaud J.M. N2-broadening coefficients of H216O lines between 13500 and 19900 cm–1 // J. Mol. Spectrosc. 1989. V. 138, iss. 2. P. 430–439.
  17. Bykov A.D., Lavrentieva N.N., Saveliev V.N., Sinitsa L.N., Camy-Peyret C., Claveau Ch., Valentin A. Half-width temperature dependence of nitrogen broadened lines in the n2 band of H2O // J. Mol. Spectrosc. 2004. V. 224, iss. 2. P. 164–175.
  18. Giver L.P., Gentry B., Schwemmer G., Wilkerson T.D. Water absorption lines, 931–961 nm – selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air // J. Quant. Spectrosc. Radiat. Transfer. 1982. V. 27, iss. 4. P. 423–436.
  19. Wilkerson T.D., Schwemmer G., Gentry B., Giver L.P. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm // J. Quant. Spectrosc. Radiat. Transfer. 1979. V. 22, iss. 4. P. 315–331.
  20. Lynch R., Gamache R.R., Neshyba S.P. Pressure broadening of H2O in the (301) ← (000) band: Effects of angular momentum and close intermolecular interactions // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, iss. 6. P. 615–626.
  21. Voronin B.A., Tennyson J., Tolchenov R.N., Lugovskoy A.A., Yurchenko S.N. A high accuracy computed line list for the HDO molecule // Mon. Notic. Roy. Astron. Soc. 2010. V. 402, iss. 1. P. 492–496.
  22. Tennyson J., Bernath P.F., Brown L.R., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Naumenko O.V., Polyansky O.L., Rothman L.S., Toth R.A., Vandaele A.C., Zobov N.F., Fally S., Fazliev A.Z., Furtenbacher T., Gordon I.E., Hu Sh.-M., Mikhailenko S.N., Voronin B.A. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II: Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2160–2184.
  23. Voronin B.A., Lavrent'eva N.N., Lugovskoj A.A., Bykov A.D., Starikov V.I., Tennison Dzh. Kojefficienty samoushirenija i ushirenija vozduhom spektral'nyh linij HD16O // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 929–935.
  24. Voronin B.A., Lavrentieva N.N., Mishina T.P., Chesnokova T.Yu., Barber M.J., Tennyson J. Estimate of the J¢J¢¢ dependence of water vapor line broadening parameters // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2308–2314.
  25. Ptashnik I.V., Shajn K.P. Vlijanie obnovlenija spektroskopicheskoj informacii na raschet potokov solnechnoj radiacii // Optika atmosf. i okeana. 2003. V. 16, N 3. P. 276–281.
  26. Messer J.K., Frank Lucia C., Helminger P. Submillimeter spectroscopy of the major isotopes of water // J. Mol. Spectrosc. 1984. V. 105, iss. 1. P. 139–155.
  27. Flaud J.-M., Camy-Peyret C., Mahmoudi A. The ν2 band of HD16O // Int. J. Infrared Millim. Waves. 1986. V. 7, N 7. P. 1063–1090.