Vol. 28, issue 07, article # 3

Nosov V. V., Lukin V. P., Nosov E. V., Torgaev A. V. Structure of air motion along optical paths inside specialized rooms of astronomical telescopes. Numerical simulation. // Optika Atmosfery i Okeana. 2015. V. 28. No. 07. P. 614-621. DOI: 10.15372/AOO20150703 [in Russian].
Copy the reference to clipboard
Abstract:

Structure of air turbulent motion inside large specialized rooms of astronomical telescopes has been studied by numerical solving of several boundary value problems for hydrodynamics equations (Navier–Stokes). There are optical elements of large-aperture telescopes inside such rooms. The main attention is devoted to closed rooms with different heating the upper and lower surfaces without exchange of internal and external medium through the borders. This enables the testing under steady state conditions of the optical characteristics of astronomical telescopes including their resolution. In particular, a visualization of the air flow motion by streamlines allows one to analyze the impact of design features of telescope and the temperature regime of its optical elements.
Results of our numerical simulations demonstrate that the solitary large vortices (coherent structures, topological solitons) are observed inside specialized rooms. The cascade decay of such vortices leads to the coherent turbulence. The simulations confirm our previously experimentally stated conclusion that the mixing of coherent structures of different close-by sizes (and close-by frequencies of major vortices) results in the non-coherent Kolmogorov turbulence.

Keywords:

turbulence, coherent turbulence, coherent structure, topological soliton, simulation of coherent structures, hydrodynamics equations, Navier–Stokes equations, topological precursor

References:

  1. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroklimat specializirovannyh pomeshhenij Bol'shogo solnechnogo vakuumnogo teleskopa. Part 1 // Optika atmosf. i okeana. 2007. V. 20, N 11. P. 1013–1021; Part 2 // Optika atmosf. i okeana. 2008. V. 21, N 3. P. 207–217.
  2. Nosov V.V., Grigor’ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part 1 // Atmos. Ocean. Opt. 2007. V. 20, N 11. P. 926–934; Part 2 // Atmos. Ocean. Opt. 2008. V. 21, N 3. P. 180–190.
  3. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part I // Proc. SPIE. 2007. V. 69360P. P. 1–11; Part II // Proc. SPIE. 2008. V. 69360Q. P. 1–12.
  4. Nosov V.V., Grigoriev V.M., Kovadlo P.G., Lukin V.P., Papushev P.G., Torgaev A.V. Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory // Proc. SPIE. 2007. V. 69361R. P. 1–4.
  5. Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnye struktury v turbulentnoj atmosfere. Jeksperiment i teorija // Solnechno-zemnaja fizika. 2009. Issue 14. С. 97–113.
  6. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in turbulent atmosphere // Proc. SPIE. 2009. V. 7296-09. P. 53–70.
  7. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. Coherent structures in the turbulent atmosphere // Mathematical Models of Non-linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere / Ed. by A.B. Nadycto et al. N.Y.: Nova Science Publishers, 2013. Ch. 20. P. 297–330.
  8. Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmosfernaja kogerentnaja turbulentnost' // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 753–759.
  9. Nosov V.V., Lukin V.P., Torgaev A.V., Kovadlo P.G. Atmospheric coherent turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
  10. Nosov V.V., Lukin V.P., Torgaev A.V. Kogerentnye struktury v atmosfere, voznikajushhie pri obtekanii prepjatstvij // Mat-ly XVI Mezhdunar. simpoz. «Optika atmosf. i okeana. Fizika atmosfery». Tomsk: Izd-vo IOA SO RAN, 2009. P. 645–648.
  11. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Grigoriev V.M., Kovadlo P.G. The Solitonic Hydrodynamical Turbulence // Proc. VI Int. Conf. «Solitons Collapses and Turbulence: Achievements Developments and Perspectives». Novosibirsk, 2012. P. 108–109.
  12. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Modelirovanie kogerentnyh struktur (topologicheskih solitonov) v zakrytyh pomeshhenijah putem chislennogo reshenija uravnenij gidrodinamiki // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 120–133.
  13. Popinet S. The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2002–2014. URL: http://gfs.sf.net
  14. Popinet S. 100 Gerris Tests. V. 1.3.2. URL: http://gerris.dalembert.upmc.fr/gerris/tests/tests/index.html; Gerris: Bibliography. URL: http://gfs.sf.net/wiki/index.php/ Bibliography; List of recent publications. URL: http:// gfs.sf.net/wiki/index.php/User:Popinet